15,798 research outputs found

    Electron transport with re-acceleration and radiation in the jets of X-ray binaries

    Full text link
    This paper studies acceleration processes of background thermal electrons in X-ray binary jets via turbulent stochastic interactions and shock collisions. By considering turbulent magnetized jets mixed with fluctuation magnetic fields and ordered, large-scale one, and numerically solving the transport equation along the jet axis, we explore the influence of such as magnetic turbulence, electron injections, location of an acceleration region, and various cooling rates on acceleration efficiency. The results show that (1) the existence of the dominant turbulent magnetic fields in the jets is necessary to accelerate background thermal electrons to relativistic energies. (2) Acceleration rates of electrons depend on magnetohydrodynamic turbulence types, from which the turbulence type with a hard slope can accelerate electrons more effectively. (3) An effective acceleration region should be located at the distance >103Rg>10^3R_{\rm g} away from the central black hole (RgR_{\rm g} being a gravitational radius). As a result of acceleration rates competing with various cooling rates, background thermal electrons obtain not only an increase in their energies but also their spectra are broadened beyond the given initial distribution to form a thermal-like distribution. (4) The acceleration mechanisms explored in this work can reasonably provide the electron maximum energy required for interpreting high-energy γ\gamma-ray observations from microquasars, but it needs to adopt some extreme parameters in order to predict a possible very high-energy γ\gamma-ray signal.Comment: 13 pages, 9 figures and 2 tables. Accepted for publication in Monthly Notices of the Royal Astronomical Societ

    Modeling Regular Replacement for String Constraint Solving

    Get PDF
    Bugs in user input sanitation of software systems often lead to vulnerabilities. Among them many are caused by improper use of regular replacement. This paper presents a precise modeling of various semantics of regular substitution, such as the declarative, finite, greedy, and reluctant, using finite state transducers (FST). By projecting an FST to its input/output tapes, we are able to solve atomic string constraints, which can be applied to both the forward and backward image computation in model checking and symbolic execution of text processing programs. We report several interesting discoveries, e.g., certain fragments of the general problem can be handled using less expressive deterministic FST. A compact representation of FST is implemented in SUSHI, a string constraint solver. It is applied to detecting vulnerabilities in web application
    corecore