8,655 research outputs found
Recommended from our members
SRSF2 Is Essential For Hematopoiesis and Its Mutations Dysregulate Alternative RNA Splicing In MDS
Abstract
Myelodysplastic syndromes (MDS) are a group of neoplasms that are ineffective in generating multiple lineages of myeloid cells and have various risks to progress to acute myeloid leukemia. Recent genome-wide sequencing studies reveal that mutations in genes of splicing factors are commonly associated with MDS. However, the importance of these splicing factors in hematopoiesis has been unclear and the causal effect of their mutations on MDS development remains to be determined. One of these newly identified genes is SRSF2, and its mutations have been linked to poor survival among MDS patients. Interestingly, most of SRSF2 mutations occur at proline 95 and the majority of these mutations change this proline to histidine (P95H). Given that SRSF2 is a well-characterized splicing factor involved in both constitutive and regulated splicing, we hypothesize that SRSF2 plays an important role in normal hematopoiesis and the SRSF2 mutations induce specific changes in alternative splicing that favor disease progression. We first examined the role of SRSF2 in hematopoiesis by generating Srsf2 null mutation in mouse blood cells via crossing conditional Srsf2 knockout mice (Srsf2f/f) with blood cell-specific Cre transgenic mice (Vav-Cre). The mutant mice produced significantly fewer definitive blood cells (10% of wild type controls), exhibited increased apoptosis in the remaining blood cells, and died during embryonic development. Importantly, we detected no hematopoietic stem/progenitor cells (lineage-/cKit+) in E14 fetal livers of Vav-Cre/Srsf2f/f mice. These results indicate that SRSF2 is essential for hematopoiesis during embryonic development. We next examined the role of SRSF2 in adult hematopoiesis by injecting polyIC into mice that carry a polyIC inducible Cre expression unit. Unexpectedly, after multiple polyIC treatments, the Srsf2f/f mice stayed alive during several months of observation. Time course genotyping analyses of polyIC treated mice revealed an increased rate of incomplete Srsf2 deletion in peripheral blood cells. These observations suggest that Srsf2 ablation did not cause immediate cell lethality in differentiated blood cells, but the gene is indispensable for the function of blood stem/progenitor cells. Since mutations of splicing factors are generally heterozygous in MDS patients, we also examined mice with Srsf2+/- blood cells. No obvious defect of hematopoiesis was observed under normal conditions or in response to stress with 5-FU treatment and sublethal irradiation. To gain molecular insight into the splicing activity of MDS-associated mutant forms of SRSF2, we performed large-scale alternative splicing surveys by using RNA-mediated oligonucleotide annealing, selection, and ligation coupled with next-generation sequencing (RASL-seq) previously developed in our lab, which offers a robust and cost-effective platform for splicing profiling. Compared to vector transduction controls, we found that overexpression of both wild type and P95H SRSF2 induced many, but distinct changes in alternative splicing in lineage-negative bone marrow cells, and importantly, we noted several changes in genes with known roles in hematopoietic malignancies that were uniquely induced by the mutant SRSF2. To further link the mutations to altered splicing in MDS patients, we also applied RASL-seq to a large number of MDS patient samples with or without mutations in SRSF2 or other splicing regulators. The data revealed a specific set of alternative splicing events that are commonly linked to MDS with splicing factor mutations. These findings strongly suggest that many of these mutations in splicing regulators are gain-of-function mutations that are causal to MDS. In conclusion, we report that SRSF2 plays an essential role in hematopoietic stem/progenitor cells and that the MDS-associated mutations in SRSF2 have a dominant effect on RNA alternative splicing. These findings provide functional information and molecular basis of SRSF2 and its MDS-related mutations in hematopoiesis and related clinical disorders.
Disclosures:
No relevant conflicts of interest to declare
Y Chromosomes of 40% Chinese Are Descendants of Three Neolithic Super-grandfathers
Demographic change of human populations is one of the central questions for
delving into the past of human beings. To identify major population expansions
related to male lineages, we sequenced 78 East Asian Y chromosomes at 3.9 Mbp
of the non-recombining region (NRY), discovered >4,000 new SNPs, and identified
many new clades. The relative divergence dates can be estimated much more
precisely using molecular clock. We found that all the Paleolithic divergences
were binary; however, three strong star-like Neolithic expansions at ~6 kya
(thousand years ago) (assuming a constant substitution rate of 1e-9/bp/year)
indicates that ~40% of modern Chinese are patrilineal descendants of only three
super-grandfathers at that time. This observation suggests that the main
patrilineal expansion in China occurred in the Neolithic Era and might be
related to the development of agriculture.Comment: 29 pages of article text including 1 article figure, 9 pages of SI
text, and 2 SI figures. 5 SI tables are in a separate ancillary fil
New Vacuum Solar Telescope and Observations with High Resolution
The New Vacuum Solar Telescope (NVST) is a 1 meter vacuum solar telescope
that aims to observe the fine structures on the Sun. The main tasks of NVST are
high resolution imaging and spectral observations, including the measurements
of solar magnetic field. NVST is the primary ground-based facility of Chinese
solar community in this solar cycle. It is located by the Fuxian Lake of
southwest China, where the seeing is good enough to perform high resolution
observations. In this paper, we first introduce the general conditions of
Fuxian Solar Observatory and the primary science cases of NVST. Then, the basic
structures of this telescope and instruments are described in detail. Finally,
some typical high resolution data of solar photosphere and chromosphere are
also shown.Comment: 16 pages, 14 figures, accepted by RAA (Research in Astronomy and
Astrophysics
Perfect teleportation with a partially entangled quantum channel
Quantum teleportation provides a way to transfer unknown quantum states from
one system to another, without physical transmission of the object itself. The
quantum channels in perfect teleportation (with 100% success probability and
fidelity) to date were limited to maximally entangled states. Here, we propose
a scheme for perfect teleportation of a qubit through a high-dimensional
quantum channel, in a pure state with two equal largest Schmidt coefficients.
The quantum channel requires appropriate joint measurement by the sender,
Alice, and enough classical information sent to the receiver, Bob. The
entanglement of Alice's measurement and classical bits she sends, increasing
with the entanglement of quantum channel, can be regard as Alice's necessary
capabilities to use the quantum channel. The two capabilities appears
complementary to each other, as the entanglement in Alice's measurement may be
partially replaced by the classical bits.Comment: 6.5 pages, 2 figures. We have rewritten the abstract, introduction,
and conclusio
Macrophage migration inhibitory factor stimulated by Helicobacter pylori increases proliferation of gastric epithelial cells
AIM: Helicobacter pylori (H pylori) is associated with increased gastric inflammatory and epithelial expression of macrophage migration inhibitory factor (MIF) and gastric epithelial cell proliferation. This study aimed at determining whether H pylori directly stimulates release of MIF in monocytes, whether the cag pathogenicity island (PAI) is involved for this function, and whether MIF stimulated by H pylori increases gastric epithelial cell proliferation in vitro. METHODS: A cytotoxic wild-type H pylori strain (TN2)and its three isogenic mutants (TN2△cag, TN2△cagA and TN2△cagE) were co-cultured with cells of a human monocyte cell line, THP-1, for 24 h at different organism/cell ratios. MIF in the supernatants was measured by an ELISA. Cells of a human gastric cancer cell line, MKN45, were then co-cultured with the supernatants, with and without monoclonal anti-MIF antibody for 24 h. The cells were further incubated for 12 h after addition of (3)H-thymidine, and the levels of incorporation of (3)H-thymidine were measured with a liquid scintillation counter. RESULTS: The wild-type strain and the isogenic mutants, TN2△cagA and TN2△cagE, increased MIF release at organism/cell ratios of 200/1 and 400/1, but not at the ratios of 50/1 and 100/1. However, the mutant TN2△cag did not increase the release of MIF at any of the four ratios. (3)H-thymidine readings for MKN-45 cells were significantly increased with supernatants derived from the wild-type strain and the mutants TN2△cagA and TN2△cagE, but not from the mutant TN2△cag. Moreover, in the presence of monoclonal anti-MIF antibody, the stimulatory effects of the wild-type strain on cell proliferation disappeared. CONCLUSION: H pylori stimulates MIF release in monocytes, likely through its cag PAI, but not related to cagA or cagE. H pylori-stimulated monocyte culture supernatant increases gastric cell proliferation, which is blocked by anti-MIF antibody, suggesting that MIF plays an important role in H pylori-induced gastric epithelial cell proliferation
Spatial analysis of visceral leishmaniasis in the oases of the plains of Kashi Prefecture, Xinjiang Uygur Autonomous Region, China
C9orf72 mutation is rare in Alzheimer's disease, Parkinson's disease, and essential tremor in China
GGGGCC repeat expansions in the C9orf72 gene have been identified as a major contributing factor in patients with amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Given the overlapping of clinical phenotypes and pathological characteristics between these two diseases and Alzheimer's disease (AD), Parkinson's disease (PD), and essential tremor (ET), we speculated regarding whether C9orf72 repeat expansions also play a major role in these three diseases. Using the repeat-primed polymerase chain reaction method, we screened for C9orf72 in three groups of patients with PD (n = 911), AD (n = 279), and ET (n = 152) in the Chinese Han population. There were no pathogenic repeats (>30 repeats) detected in either the patients or controls (n = 314), which indicated that the pathogenic expansions of C9orf72 might be rare in these three diseases. However, the analysis of the association between the number of repeats (p = 0.001), short/intermediate genotype (short: <7 repeats; intermediate: ≥7 repeats) (odds ratio 1.37 [1.05, 1.79]), intermediate/intermediate genotype (Odds ratio 2.03 [1.17, 3.54]), and PD risks indicated that intermediate repeat alleles could act as contributors to PD. To the best of our knowledge, this study is the first to reveal the correlation between C9orf72 and Chinese PD, AD, or ET patients. Additionally, the results of this study suggest the novel idea that the intermediate repeat allele in C9orf72 is most likely a risk factor for PD
A data analysis method for isochronous mass spectrometry using two time-of-flight detectors at CSRe
The concept of isochronous mass spectrometry (IMS) applying two
time-of-flight (TOF) detectors originated many years ago at GSI. However, the
corresponding method for data analysis has never been discussed in detail.
Recently, two TOF detectors have been installed at CSRe and the new working
mode of the ring is under test. In this paper, a data analysis method for this
mode is introduced and tested with a series of simulations. The results show
that the new IMS method can significantly improve mass resolving power via the
additional velocity information of stored ions. This improvement is especially
important for nuclides with Lorentz factor -value far away from the
transition point of the storage ring CSRe.Comment: published in Chinese Physics C Vol. 39, No. 10 (2015) 10620
- …
