24,041 research outputs found
Self-Learning Determinantal Quantum Monte Carlo Method
Self-learning Monte Carlo method [arXiv:1610.03137, 1611.09364] is a powerful
general-purpose numerical method recently introduced to simulate many-body
systems. In this work, we implement this method in the framework of
determinantal quantum Monte Carlo simulation of interacting fermion systems.
Guided by a self-learned bosonic effective action, our method uses a cumulative
update [arXiv:1611.09364] algorithm to sample auxiliary field configurations
quickly and efficiently. We demonstrate that self-learning determinantal Monte
Carlo method can reduce the auto-correlation time to as short as one near a
critical point, leading to -fold speedup. This enables to
simulate interacting fermion system on a lattice for the first
time, and obtain critical exponents with high accuracy.Comment: 5 pages, 4 figure
Study of the cytological features of bone marrow mesenchymal stem cells from patients with neuromyelitis optica.
Neuromyelitis optica (NMO) is a refractory autoimmune inflammatory disease of the central nervous system without an effective cure. Autologous bone marrow‑derived mesenchymal stem cells (BM‑MSCs) are considered to be promising therapeutic agents for this disease due to their potential regenerative, immune regulatory and neurotrophic effects. However, little is known about the cytological features of BM‑MSCs from patients with NMO, which may influence any therapeutic effects. The present study aimed to compare the proliferation, differentiation and senescence of BM‑MSCs from patients with NMO with that of age‑ and sex‑matched healthy subjects. It was revealed that there were no significant differences in terms of cell morphology or differentiation capacities in the BM‑MSCs from the patients with NMO. However, in comparison with healthy controls, BM‑MSCs derived from the Patients with NMO exhibited a decreased proliferation rate, in addition to a decreased expression of several cell cycle‑promoting and proliferation‑associated genes. Furthermore, the cell death rate increased in BM‑MSCs from patients under normal culture conditions and an assessment of the gene expression profile further confirmed that the BM‑MSCs from patients with NMO were more vulnerable to senescence. Platelet‑derived growth factor (PDGF), as a major mitotic stimulatory factor for MSCs and a potent therapeutic cytokine in demyelinating disease, was able to overcome the decreased proliferation rate and increased senescence defects in BM‑MSCs from the patients with NMO. Taken together, the results from the present study have enabled the proposition of the possibility of combining the application of autologous BM‑MSCs and PDGF for refractory and severe patients with NMO in order to elicit improved therapeutic effects, or, at the least, to include PDGF as a necessary and standard growth factor in the current in vitro formula for the culture of NMO patient‑derived BM‑MSCs
Localization and Mobility Gap in Topological Anderson Insulator
It has been proposed that disorder may lead to a new type of topological
insulator, called topological Anderson insulator (TAI). Here we examine the
physical origin of this phenomenon. We calculate the topological invariants and
density of states of disordered model in a super-cell of 2-dimensional
HgTe/CdTe quantum well. The topologically non-trivial phase is triggered by a
band touching as the disorder strength increases. The TAI is protected by a
mobility gap, in contrast to the band gap in conventional quantum spin Hall
systems. The mobility gap in the TAI consists of a cluster of non-trivial
subgaps separated by almost flat and localized bands.Comment: 8 pages, 7 figure
Observation of Spin Hall Effect in Weyl Semimetal WTe2 at Room Temperature
Discovery of topological Weyl semimetals has revealed the opportunities to
realize several extraordinary physical phenomena in condensed matter physics.
Specifically, these semimetals with strong spin-orbit coupling, broken
inversion symmetry and novel spin texture are predicted to exhibit a large spin
Hall effect that can efficiently convert the charge current to a spin current.
Here we report the direct experimental observation of a large spin Hall and
inverse spin Hall effects in Weyl semimetal WTe2 at room temperature obeying
Onsager reciprocity relation. We demonstrate the detection of the pure spin
current generated by spin Hall phenomenon in WTe2 by making van der Waals
heterostructures with graphene, taking advantage of its long spin coherence
length and spin transmission at the heterostructure interface. These
experimental findings well supported by ab initio calculations show a large
charge-spin conversion efficiency in WTe2; which can pave the way for
utilization of spin-orbit induced phenomena in spintronic memory and logic
circuit architectures
Diabetes adversely affects phospholipid profiles in human carotid artery endarterectomy plaques
- …
