1,013 research outputs found
Ising transition in the two-dimensional quantum Heisenberg model
We study the thermodynamics of the spin- two-dimensional quantum
Heisenberg antiferromagnet on the square lattice with nearest () and
next-nearest () neighbor couplings in its collinear phase (),
using the pure-quantum self-consistent harmonic approximation. Our results show
the persistence of a finite-temperature Ising phase transition for every value
of the spin, provided that the ratio is greater than a critical value
corresponding to the onset of collinear long-range order at zero temperature.
We also calculate the spin- and temperature-dependence of the collinear
susceptibility and correlation length, and we discuss our results in light of
the experiments on LiVOSiO and related compounds.Comment: 4 page, 4 figure
Adiabatic multicritical quantum quenches: Continuously varying exponents depending on the direction of quenching
We study adiabatic quantum quenches across a quantum multicritical point
(MCP) using a quenching scheme that enables the system to hit the MCP along
different paths. We show that the power-law scaling of the defect density with
the rate of driving depends non-trivially on the path, i.e., the exponent
varies continuously with the parameter that defines the path, up to a
critical value ; on the other hand for , the scaling exponent saturates to a constant value. We show that
dynamically generated and {\it path()-dependent} effective critical
exponents associated with the quasicritical points lying close to the MCP (on
the ferromagnetic side), where the energy-gap is minimum, lead to this
continuously varying exponent. The scaling relations are established using the
integrable transverse XY spin chain and generalized to a MCP associated with a
-dimensional quantum many-body systems (not reducible to two-level systems)
using adiabatic perturbation theory. We also calculate the effective {\it
path-dependent} dimensional shift (or the shift in center of the
impulse region) that appears in the scaling relation for special paths lying
entirely in the paramagnetic phase. Numerically obtained results are in good
agreement with analytical predictions.Comment: 5 pages, 4 figure
Semileptonic Hyperon Decays
We review the status of hyperon semileptonic decays. The central issue is the
element of the CKM matrix, where we obtain . This
value is of similar precision, but higher, than the one derived from ,
and in better agreement with the unitarity requirement,
. We find that the Cabibbo model gives an
excellent fit of the existing form factor data on baryon beta decays ( for 3 degrees of freedom) with , , and no indication of flavour-SU(3)-breaking effects. We
indicate the need of more experimental and theoretical work, both on hyperon
beta decays and on decays.Comment: 37 pages, 8 figures, 4 tables, Final version of this material is
scheduled to appear in the Annual Review of Nuclear and Particle Science Vol.
5
Affine Lie Algebras in Massive Field Theory and Form-Factors from Vertex Operators
We present a new application of affine Lie algebras to massive quantum field
theory in 2 dimensions, by investigating the limit of the q-deformed
affine symmetry of the sine-Gordon theory, this limit occurring
at the free fermion point. Working in radial quantization leads to a
quasi-chiral factorization of the space of fields. The conserved charges which
generate the affine Lie algebra split into two independent affine algebras on
this factorized space, each with level 1 in the anti-periodic sector, and level
in the periodic sector. The space of fields in the anti-periodic sector can
be organized using level- highest weight representations, if one supplements
the \slh algebra with the usual local integrals of motion. Introducing a
particle-field duality leads to a new way of computing form-factors in radial
quantization. Using the integrals of motion, a momentum space bosonization
involving vertex operators is formulated. Form-factors are computed as vacuum
expectation values in momentum space. (Based on talks given at the Berkeley
Strings 93 conference, May 1993, and the III International Conference on
Mathematical Physics, String Theory, and Quantum Gravity, Alushta, Ukraine,
June 1993.)Comment: 13 pages, CLNS 93/125
Breakdown of the adiabatic limit in low dimensional gapless systems
It is generally believed that a generic system can be reversibly transformed
from one state into another by sufficiently slow change of parameters. A
standard argument favoring this assertion is based on a possibility to expand
the energy or the entropy of the system into the Taylor series in the ramp
speed. Here we show that this argumentation is only valid in high enough
dimensions and can break down in low-dimensional gapless systems. We identify
three generic regimes of a system response to a slow ramp: (A) mean-field, (B)
non-analytic, and (C) non-adiabatic. In the last regime the limits of the ramp
speed going to zero and the system size going to infinity do not commute and
the adiabatic process does not exist in the thermodynamic limit. We support our
results by numerical simulations. Our findings can be relevant to
condensed-matter, atomic physics, quantum computing, quantum optics, cosmology
and others.Comment: 11 pages, 5 figures, to appear in Nature Physics (originally
submitted version
How to fix a broken symmetry: Quantum dynamics of symmetry restoration in a ferromagnetic Bose-Einstein condensate
We discuss the dynamics of a quantum phase transition in a spin-1
Bose-Einstein condensate when it is driven from the magnetized
broken-symmetry phase to the unmagnetized ``symmetric'' polar phase. We
determine where the condensate goes out of equilibrium as it approaches the
critical point, and compute the condensate magnetization at the critical point.
This is done within a quantum Kibble-Zurek scheme traditionally employed in the
context of symmetry-breaking quantum phase transitions. Then we study the
influence of the nonequilibrium dynamics near a critical point on the
condensate magnetization. In particular, when the quench stops at the critical
point, nonlinear oscillations of magnetization occur. They are characterized by
a period and an amplitude that are inversely proportional. If we keep driving
the condensate far away from the critical point through the unmagnetized
``symmetric'' polar phase, the amplitude of magnetization oscillations slowly
decreases reaching a non-zero asymptotic value. That process is described by
the equation that can be mapped onto the classical mechanical problem of a
particle moving under the influence of harmonic and ``anti-friction'' forces
whose interplay leads to surprisingly simple fixed-amplitude oscillations. We
obtain several scaling results relating the condensate magnetization to the
quench rate, and verify numerically all analytical predictions.Comment: 15 pages, 11 figures, final version accepted in NJP (slight changes
with respect to the former submission
Two-spin entanglement distribution near factorized states
We study the two-spin entanglement distribution along the infinite
chain described by the XY model in a transverse field; closed analytical
expressions are derived for the one-tangle and the concurrences ,
being the distance between the two possibly entangled spins, for values of the
Hamiltonian parameters close to those corresponding to factorized ground
states. The total amount of entanglement, the fraction of such entanglement
which is stored in pairwise entanglement, and the way such fraction distributes
along the chain is discussed, with attention focused on the dependence on the
anisotropy of the exchange interaction. Near factorization a characteristic
length-scale naturally emerges in the system, which is specifically related
with entanglement properties and diverges at the critical point of the fully
isotropic model. In general, we find that anisotropy rule a complex behavior of
the entanglement properties, which results in the fact that more isotropic
models, despite being characterized by a larger amount of total entanglement,
present a smaller fraction of pairwise entanglement: the latter, in turn, is
more evenly distributed along the chain, to the extent that, in the fully
isotropic model at the critical field, the concurrences do not depend on .Comment: 14 pages, 6 figures. Final versio
Quantization in a General Light-front Frame
In this paper, we study the question of quantization of quantum field
theories in a general light-front frame. We quantize scalar, fermion as well as
gauge field theories in a systematic manner carrying out the Hamiltonian
analysis carefully. The decomposition of the fields into positive and negative
frequency terms needs to be done carefully after which we show that the (anti)
commutation relations for the quantum operators become frame independent. The
frame dependence is completely contained in the functions multiplying these
operators in the field decomposition. We derive the propagators from the vacuum
expectation values of the time ordered products of the fields.Comment: 14 pages, revtex, version to be published in Phys. Rev. D with the
discussion of Abelian field quantization replaced by the non-Abelian field
and some comments added on the Mandelstam-Liebbrandt prescriptio
Relation between concurrence and Berry phase of an entangled state of two spin 1/2 particles
We have studied here the influence of the Berry phase generated due to a
cyclic evolution of an entangled state of two spin 1/2 particles. It is shown
that the measure of formation of entanglement is related to the cyclic
geometric phase of the individual spins. \\Comment: 6 pages. Accepted in Europhys. Letters (likely to be published in vol
73, pp1-6 (2006)
- …
