4,406 research outputs found
Coulomb implosion mechanism of negative ion acceleration in laser plasmas
Coulomb implosion mechanism of the negatively charged ion acceleration in
laser plasmas is proposed. When a cluster target is irradiated by an intense
laser pulse and the Coulomb explosion of positively charged ions occurs, the
negative ions are accelerated inward. The maximum energy of negative ions is
several times lower than that of positive ions. The theoretical description and
Particle-in-Cell simulation of the Coulomb implosion mechanism and the evidence
of the negative ion acceleration in the experiments on the high intensity laser
pulse interaction with the cluster targets are presented.Comment: 4 page
Treatment recommendation differences for schizophrenia and major depression: a population-based study in a Vietnamese cohort
Background: In Vietnam, the mental health care infrastructure is on the verge of transformation with an increase in the demand for access to adequate and effective mental health care services. Public attitudes towards mental illness, as well as corresponding treatment options influence help-seeking behaviors of patients and caregivers, affecting the course of their treatment. This study assesses attitudes towards treatment options for depression and schizophrenia, as the two most common psychiatric disorders in Vietnam, accounting for at least 75% of all psychiatric inpatients. Methods: A general population-based survey was conducted in Hanoi, Vietnam between April and August 2013. Participants received a description of a person with symptoms of either depression (n=326) or schizophrenia (n=403) and were asked to give recommendations for adequate sources of mental health support and treatment options. Multiple analyses on a single item level compared the likelihood of recommendation between schizophrenia and depression. Results: Overall, respondents recommended health care services, ranging from seeking mental health care professionals, psychotherapists, and psychiatrists for both disorders. Psychotherapy was the most favored treatment method, whereas further treatment options, such as concentration and relaxation exercises, meditation or yoga and psychotropic medication were also endorsed as helpful. For the schizophrenia vignette condition, psychotherapy, visiting a psychiatrist or psychotherapist received stronger endorsement rates as compared to the depression vignette. Furthermore, ECT, Feng Shui-based practices, praying and visiting natural healers were recommended less by respondents for the depression vignette in comparison with the schizophrenia vignette. Conclusions: The Vietnamese public endorsed evidence-based treatment recommendations from a variety of treatments options. Differences in the treatment recommendations between depression and schizophrenia reflected the perceived severity of each disorder. Further developments of the Vietnamese mental health care system concerning mental health care providers, as well as the legal regulations surrounding the provision of psychotherapy are needed
Truncated and Helix-Constrained Peptides with High Affinity and Specificity for the cFos Coiled-Coil of AP-1
Protein-based therapeutics feature large interacting surfaces. Protein folding endows structural stability to localised surface epitopes, imparting high affinity and target specificity upon interactions with binding partners. However, short synthetic peptides with sequences corresponding to such protein epitopes are unstructured in water and promiscuously bind to proteins with low affinity and specificity. Here we combine structural stability and target specificity of proteins, with low cost and rapid synthesis of small molecules, towards meeting the significant challenge of binding coiled coil proteins in transcriptional regulation. By iteratively truncating a Jun-based peptide from 37 to 22 residues, strategically incorporating i-->i+4 helix-inducing constraints, and positioning unnatural amino acids, we have produced short, water-stable, alpha-helical peptides that bind cFos. A three-dimensional NMR-derived structure for one peptide (24) confirmed a highly stable alpha-helix which was resistant to proteolytic degradation in serum. These short structured peptides are entropically pre-organized for binding with high affinity and specificity to cFos, a key component of the oncogenic transcriptional regulator Activator Protein-1 (AP-1). They competitively antagonized the cJun–cFos coiled-coil interaction. Truncating a Jun-based peptide from 37 to 22 residues decreased the binding enthalpy for cJun by ~9 kcal/mol, but this was compensated by increased conformational entropy (TDS ≤ 7.5 kcal/mol). This study demonstrates that rational design of short peptides constrained by alpha-helical cyclic pentapeptide modules is able to retain parental high helicity, as well as high affinity and specificity for cFos. These are important steps towards small antagonists of the cJun-cFos interaction that mediates gene transcription in cancer and inflammatory diseases
Charged Particle Production in Proton-, Deuteron-, Oxygen- and Sulphur-Nucleus Collisions at 200 GeV per Nucleon
The transverse momentum and rapidity distributions of net protons and
negatively charged hadrons have been measured for minimum bias proton-nucleus
and deuteron-gold interactions, as well as central oxygen-gold and
sulphur-nucleus collisions at 200 GeV per nucleon. The rapidity density of net
protons at midrapidity in central nucleus-nucleus collisions increases both
with target mass for sulphur projectiles and with the projectile mass for a
gold target. The shape of the rapidity distributions of net protons forward of
midrapidity for d+Au and central S+Au collisions is similar. The average
rapidity loss is larger than 2 units of rapidity for reactions with the gold
target. The transverse momentum spectra of net protons for all reactions can be
described by a thermal distribution with `temperatures' between 145 +- 11 MeV
(p+S interactions) and 244 +- 43 MeV (central S+Au collisions). The
multiplicity of negatively charged hadrons increases with the mass of the
colliding system. The shape of the transverse momentum spectra of negatively
charged hadrons changes from minimum bias p+p and p+S interactions to p+Au and
central nucleus-nucleus collisions. The mean transverse momentum is almost
constant in the vicinity of midrapidity and shows little variation with the
target and projectile masses. The average number of produced negatively charged
hadrons per participant baryon increases slightly from p+p, p+A to central
S+S,Ag collisions.Comment: 47 pages, submitted to Z. Phys.
Effective Rheology of Bubbles Moving in a Capillary Tube
We calculate the average volumetric flux versus pressure drop of bubbles
moving in a single capillary tube with varying diameter, finding a square-root
relation from mapping the flow equations onto that of a driven overdamped
pendulum. The calculation is based on a derivation of the equation of motion of
a bubble train from considering the capillary forces and the entropy production
associated with the viscous flow. We also calculate the configurational
probability of the positions of the bubbles.Comment: 4 pages, 1 figur
Observation of associated near-side and away-side long-range correlations in √sNN=5.02 TeV proton-lead collisions with the ATLAS detector
Two-particle correlations in relative azimuthal angle (Δϕ) and pseudorapidity (Δη) are measured in √sNN=5.02 TeV p+Pb collisions using the ATLAS detector at the LHC. The measurements are performed using approximately 1 μb-1 of data as a function of transverse momentum (pT) and the transverse energy (ΣETPb) summed over 3.1<η<4.9 in the direction of the Pb beam. The correlation function, constructed from charged particles, exhibits a long-range (2<|Δη|<5) “near-side” (Δϕ∼0) correlation that grows rapidly with increasing ΣETPb. A long-range “away-side” (Δϕ∼π) correlation, obtained by subtracting the expected contributions from recoiling dijets and other sources estimated using events with small ΣETPb, is found to match the near-side correlation in magnitude, shape (in Δη and Δϕ) and ΣETPb dependence. The resultant Δϕ correlation is approximately symmetric about π/2, and is consistent with a dominant cos2Δϕ modulation for all ΣETPb ranges and particle pT
Recommended from our members
Coronary Computed Tomographic Angiography at 80 kVp and Knowledge-Based Iterative Model Reconstruction Is Non-Inferior to that at 100 kVp with Iterative Reconstruction
The aims of this study were to compare the image noise and quality of coronary computed tomographic angiography (CCTA) at 80 kVp with knowledge-based iterative model reconstruction (IMR) to those of CCTA at 100 kVp with hybrid iterative reconstruction (IR), and to evaluate the feasibility of a low-dose radiation protocol with IMR. Thirty subjects who underwent prospective electrocardiogram-gating CCTA at 80 kVp, 150 mAs, and IMR (Group A), and 30 subjects with 100 kVp, 150 mAs, and hybrid IR (Group B) were retrospectively enrolled after sample-size calculation. A BMI of less than 25 kg/m2 was required for inclusion. The attenuation value and image noise of CCTA were measured and the signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) were calculated at the proximal right coronary artery and left main coronary artery. The image noise was analyzed using a non-inferiority test. The CCTA images were qualitatively evaluated using a four-point scale. The radiation dose was significantly lower in Group A than Group B (0.69 ± 0.08 mSv vs. 1.39 ± 0.15 mSv, p < 0.001). The attenuation values were higher in Group A than Group B (p < 0.001). The SNR and CNR in Group A were higher than those of Group B. The image noise of Group A was non-inferior to that of Group B. Qualitative image quality of Group A was better than that of Group B (3.6 vs. 3.4, p = 0.017). CCTA at 80 kVp with IMR could reduce the radiation dose by about 50%, with non-inferior image noise and image quality than those of CCTA at 100 kVp with hybrid IR
Hypoxia increases neutrophil-driven matrix destruction after exposure to Mycobacterium tuberculosis.
The importance of neutrophils in the pathology of tuberculosis (TB) has been recently established. We demonstrated that TB lesions in man are hypoxic, but how neutrophils in hypoxia influence lung tissue damage is unknown. We investigated the effect of hypoxia on neutrophil-derived enzymes and tissue destruction in TB. Human neutrophils were stimulated with M. tuberculosis (M.tb) or conditioned media from M.tb-infected monocytes (CoMTB). Neutrophil matrix metalloproteinase-8/-9 and elastase secretion were analysed by luminex array and gelatin zymography, gene expression by qPCR and cell viability by flow cytometry. Matrix destruction was investigated by confocal microscopy and functional assays and neutrophil extracellular traps (NETs) by fluorescence assay. In hypoxia, neutrophil MMP-8 secretion and gene expression were up-regulated by CoMTB. MMP-9 activity and neutrophil elastase (NE) secretion were also increased in hypoxia. Hypoxia inhibited NET formation and both neutrophil apoptosis and necrosis after direct stimulation by M.tb. Hypoxia increased TB-dependent neutrophil-mediated matrix destruction of Type I collagen, gelatin and elastin, the main structural proteins of the human lung. Dimethyloxalylglycin (DMOG), which stabilizes hypoxia-inducible factor-1α, increased neutrophil MMP-8 and -9 secretion. Hypoxia in our cellular model of TB up-regulated pathways that increase neutrophil secretion of MMPs that are implicated in matrix destruction
Search for direct production of charginos and neutralinos in events with three leptons and missing transverse momentum in √s = 7 TeV pp collisions with the ATLAS detector
A search for the direct production of charginos and neutralinos in final states with three electrons or muons and missing transverse momentum is presented. The analysis is based on 4.7 fb−1 of proton–proton collision data delivered by the Large Hadron Collider and recorded with the ATLAS detector. Observations are consistent with Standard Model expectations in three signal regions that are either depleted or enriched in Z-boson decays. Upper limits at 95% confidence level are set in R-parity conserving phenomenological minimal supersymmetric models and in simplified models, significantly extending previous results
Measurement of the production of a W boson in association with a charm quark in pp collisions at √s = 7 TeV with the ATLAS detector
The production of a W boson in association with a single charm quark is studied using 4.6 fb−1 of pp collision data at s√ = 7 TeV collected with the ATLAS detector at the Large Hadron Collider. In events in which a W boson decays to an electron or muon, the charm quark is tagged either by its semileptonic decay to a muon or by the presence of a charmed meson. The integrated and differential cross sections as a function of the pseudorapidity of the lepton from the W-boson decay are measured. Results are compared to the predictions of next-to-leading-order QCD calculations obtained from various parton distribution function parameterisations. The ratio of the strange-to-down sea-quark distributions is determined to be 0.96+0.26−0.30 at Q 2 = 1.9 GeV2, which supports the hypothesis of an SU(3)-symmetric composition of the light-quark sea. Additionally, the cross-section ratio σ(W + +c¯¯)/σ(W − + c) is compared to the predictions obtained using parton distribution function parameterisations with different assumptions about the s−s¯¯¯ quark asymmetry
- …
