10 research outputs found
Evaluation of an immunochromatography test for malaria diagnosis under different storage conditions
Molecular screening of Plasmodium sp. asymptomatic carriers among transfusion centers from Brazilian Amazon region
Diagnóstico molecular da malária em uma unidade de atenção terciária na Amazônia Brasileira
Immunoregulation in human malaria: the challenge of understanding asymptomatic infection
Asymptomatic Plasmodium infection carriers represent a major threat to malaria control worldwide as they are silent natural reservoirs and do not seek medical care. There are no standard criteria for asymptomaticPlasmodium infection; therefore, its diagnosis relies on the presence of the parasite during a specific period of symptomless infection. The antiparasitic immune response can result in reducedPlasmodium sp. load with control of disease manifestations, which leads to asymptomatic infection. Both the innate and adaptive immune responses seem to play major roles in asymptomatic Plasmodiuminfection; T regulatory cell activity (through the production of interleukin-10 and transforming growth factor-β) and B-cells (with a broad antibody response) both play prominent roles. Furthermore, molecules involved in the haem detoxification pathway (such as haptoglobin and haeme oxygenase-1) and iron metabolism (ferritin and activated c-Jun N-terminal kinase) have emerged in recent years as potential biomarkers and thus are helping to unravel the immune response underlying asymptomatic Plasmodium infection. The acquisition of large data sets and the use of robust statistical tools, including network analysis, associated with well-designed malaria studies will likely help elucidate the immune mechanisms responsible for asymptomatic infection
Malaria seroprevalence in blood bank donors from endemic and non-endemic areas of Venezuela
In Venezuela, a total of 363,466 malaria cases were reported between 1999-2009. Several states are experiencing malaria epidemics, increasing the risk of vector and possibly transfusion transmission. We investigated the risk of transfusion transmission in blood banks from endemic and non-endemic areas of Venezuela by examining blood donations for evidence of malaria infection. For this, commercial kits were used to detect both malaria-specific antibodies (all species) and malaria antigen (Plasmodium falciparum only) in samples from Venezuelan blood donors (n = 762). All samples were further studied by microscopy and polymerase chain reaction (PCR). The antibody results showed that P. falciparum-infected patients had a lower sample/cut-off ratio than Plasmodium vivax-infected patients. Conversely, a higher ratio for antigen was observed among all P. falciparum-infected individuals. Sensitivity and specificity were higher for malarial antigens (100 and 99.8%) than for antibodies (82.2 and 97.4%). Antibody-positive donors were observed in Caracas, Ciudad Bolívar, Puerto Ayacucho and Cumaná, with prevalences of 1.02, 1.60, 3.23 and 3.63%, respectively. No PCR-positive samples were observed among the donors. However, our results show significant levels of seropositivity in blood donors, suggesting that more effective measures are required to ensure that transfusion transmission does not occur
Asymptomatic Plasmodium spp. infection in Tierralta, Colombia
With the aim of determining the prevalence of asymptomatic Plasmodium spp. infection by thick smear and PCR and its association with demographic and epidemiological characteristics in the village of Nuevo Tay, Tierralta, Córdoba, Colombia, a cross-sectional population study was carried out, using random probabilistic sampling. Venous blood samples were taken from 212 people on day 0 for thick smear and PCR. Clinical follow-up and thick smears were carried out on days 14 and 28. The prevalence of Plasmodium spp. infection was 17.9% (38/212; 95% CI: 12.5-23.3%) and the prevalence of asymptomatic Plasmodiumspp. infection was 14.6% (31/212; 95% CI: 9.6-19.6%). Plasmodium vivax was found more frequently (20/31; 64.5%) than Plasmodium falciparum (9/31; 29%) and mixed infections (2/31; 6.5%). A significantly higher prevalence of asymptomatic infection was found in men (19.30%) than in women (9.18%) (prevalence ratio: 2.10; 95% CI: 1.01-4.34%; p = 0.02). People who developed symptoms had a significantly higher parasitemia on day 0 than those who remained asymptomatic, of 1,881.5 ± 3,759 versus 79 ± 106.9 (p = 0.008). PCR detected 50% more infections than the thick smears. The presence of asymptomatic Plasmodium spp. infection highlights the importance of carrying out active searches amongst asymptomatic populations residing in endemic areas
Malaria diagnosis from pooled blood samples: comparative analysis of real-time PCR, nested PCR and immunoassay as a platform for the molecular and serological diagnosis of malaria on a large-scale
Malaria diagnoses has traditionally been made using thick blood smears, but more sensitive and faster techniques are required to process large numbers of samples in clinical and epidemiological studies and in blood donor screening. Here, we evaluated molecular and serological tools to build a screening platform for pooled samples aimed at reducing both the time and the cost of these diagnoses. Positive and negative samples were analysed in individual and pooled experiments using real-time polymerase chain reaction (PCR), nested PCR and an immunochromatographic test. For the individual tests, 46/49 samples were positive by real-time PCR, 46/49 were positive by nested PCR and 32/46 were positive by immunochromatographic test. For the assays performed using pooled samples, 13/15 samples were positive by real-time PCR and nested PCR and 11/15 were positive by immunochromatographic test. These molecular methods demonstrated sensitivity and specificity for both the individual and pooled samples. Due to the advantages of the real-time PCR, such as the fast processing and the closed system, this method should be indicated as the first choice for use in large-scale diagnosis and the nested PCR should be used for species differentiation. However, additional field isolates should be tested to confirm the results achieved using cultured parasites and the serological test should only be adopted as a complementary method for malaria diagnosis
