119 research outputs found
Magnetodielectric effect of Bi6Fe2Ti3O18 film under an ultra-low magnetic field
Good quality and fine grain Bi6Fe2Ti3O18 magnetic ferroelectric films with
single-phase layered perovskite structure have been successfully prepared via
metal organic decomposition (MOD) method. Results of low-temperature
magnetocapacitance measurements reveal that an ultra-low magnetic field of 10
Oe can produce a nontrivial magnetodielectric (MD) response in
zero-field-cooling condition, and the relative variation of dielectric
constants in magnetic field is positive, i.e., MD=0.05, when T<55K, but
negative with a maximum of MD=-0.14 when 55K<T<190K. The magnetodielectric
effect appears a sign change at 55K, which is due to transition from
antiferromagnetic to weak ferromagnetic; and vanishes abruptly around 190K,
which is thought to be associated with order-disorder transition of iron ion at
B site of perovskite structures. The ultra-low-field magnetodielectric
behaviour of Bi6Fe2Ti3O18 film has been discussed in the light of
quasi-two-dimension unique nature of local spin order in ferroelectric film.
Our results allow expectation on low-cost applications of detectors and
switches for extremely weak magnetic fields in a wide temperature range
55K-190K.Comment: 10 pages 4 figures, planned to submit to J. Phys.: Condensed Matte
The Anti-Chlorine Campaign in the Great Lakes: Should Chlorinated Compounds Be Guilty Until Proven Innocent?
Synthesis and Characterization of Nanocrystalline (Zr₀.₈₄Y₀.₁₆)O₁.₉₂-(Ce₀.₈₅Sm₀.₁₅)O₁.₉₂₅ Heterophase Thin Films
A new type of nanocrystalline samarium-doped-ceria/yttrium-stabilized-zirconia (SDC/YSZ) heterophase thin film electrolytes was synthesized on MgO and Si substrates by spin coating and thermal treatment of SDC-nanoparticle-incorporated polymeric precursors. In the heterophase films, SDC nanoparticles were uniformly dispersed in a nanocrystalline YSZ matrix. The heterophase structure was stable when fired in air at temperatures up to 850 °C. The nanocrystalline heterophase thin films exhibited electrical conductivities significantly higher than that of the phase-pure YSZ and SDC nanocrystalline thin films at reduced temperatures. The effects of SDC grain size and volume fraction on the electrical conductivity of the heterophase films were also studied
Self-Propelling and Positioning of Droplets Using Continuous Topography Gradient Surface
Formation of Multigradient Porous Surfaces for Selective Bacterial Entrapment
Herein we describe the preparation of multigradient porous platforms by using the breath figures approach. In a single and straightforward step, we prepared porous surfaces in which three different parameters vary gradually from the edge of the sample to the center in a radial manner. Thus, we evidenced the gradual variation of the pore size and the shape of the pores that can be varied, depending on the sample concentration, but also depending on their radial position within the same sample. In addition, we succeeded in the control over the chemical composition inside and outside the pores as well as the variation of the concentration of block copolymer inside the pores as a function of their radial position. Moreover, the chemical composition and the variable cavity size of porous surfaces have been evaluated to analyze the influence of these variables on the selective bacterial immobilization. To the best of our knowledge this is the first example in which, by using a simple one-step strategy, a multigradient surface can be obtained. These initial results can be the base to construct platforms for selective immobilization and isolation of bacteria.Peer Reviewe
The effect of phytostabilization on Zn speciation in a dredged contaminated sediment using scanning electron microscopy, X-ray fluorescence, EXAFS spectroscopy, and principal components analysis
Dynamics of crystallization and dissolution of calcium orthophosphates at the near-molecular level
The Anti-Chlorine Campaign in the Great Lakes: Should Chlorinated Compounds Be Guilty Until Proven Innocent?
Mathematical Approach to Optimizing the Panchromatic Absorption of Natural Dye Combinations for Dye-Sensitized Solar Cells
The goal of this work was to optimize the combination of natural dyes producing panchromatic absorption matched to the AM1.5 solar spectrum for use in dye sensitized solar cells (DSSCs). Six classes of dyes (Anthocyanins, Betalins, Chlorophyll, Xanthonoids, Curcuminoids and Phycobilins) were explored. UV-Vis data and radial basis function interpolation were used to model the absorbance of 2568 combinations, and three objective functions determined the most commensurable spectrum. TiO2 anodes were sensitized with 42 dye combinations and IV measurements made on simple cells. The absorbance-optimized combination yielded an efficiency of only 0.41%, compared to 1.31% for a simple 1:1 molar ratio of Curcuminoids and α-Mangostin, which showed symbiotic effects. Our results indicate that panchromatic absorption alone is not sufficient to predict optimal DSSC performance, although the mathematical approach may have broader application.</jats:p
- …
