1,912 research outputs found

    Investigation on efficiency improvement of a Kalina cycle by sliding condensation pressure method

    Get PDF
    Conventional Kalina cycle-based geothermal power plants are designed with a fixed working point determined by the local maximum ambient temperature during the year. A previous study indicated that the plant’s annual average thermal efficiency would be improved if the ammonia mass fraction of the Kalina cycle could be tuned to adapt to the ambient conditions. In this paper, another sliding condensation pressure method is investigated. A theoretical model is set up and then a numerical program is developed to analyze the cycle performance. The condensation pressure adjustment in accordance to the changing ambient temperature has been numerically demonstrated under various ammonia-water mixture concentrations. The results indicate that the Kalina cycle using sliding condensation pressure method can achieve much better annual average thermal efficiency than a conventional Kalina cycle through matching the cycle with the changing ambient temperature via controlling condensation pressure. Furthermore, the sliding condensation pressure method is compared with the composition tuning method. The results show that the annual average efficiency improvement of the sliding condensation pressure method is higher than that of the composition tuning method

    Static stiffness modeling and sensitivity analysis for geared system used for rotary feeding

    Get PDF
    The positioning accuracy of rotary feed system under load greatly depends on the static stiffness of mechanical transmission system. This paper proposes a unified static stiffness model of rotary feed system with geared transmission system. Taking the torsional stiffness of transmission shaft and mesh stiffness of gear pairs into account, the motion equations of the whole transmission system are presented. Based on the static equilibrium, a unified expression for the relationship between torsional angles of two adjacent elements is derived. Then a unified static stiffness model is presented. Furthermore, analytical expressions for sensitivity analysis of the static stiffness on the individual element’s stiffness and design parameters are derived. The presented model is verified by a traditional model, and a good agreement is obtained. The influence of phase angle of meshing gear pairs on the resultant static stiffness is investigated. An example transmission system is employed to perform the sensitivity analysis and the results are analyzed. The proposed model provides an essential tool for the design of rotary feed system satisfying requirement of static stiffness

    Design of a Piezoelectric-actuated microgripper with a three-stage flexure-based amplification

    Get PDF
    This paper presents a novel microgripper mechanism for micromanipulation and assembly. The microgripper is driven by a piezoelectric actuator, and a three-stage flexure-based amplification has been designed to achieve large jaw displacements. The kinematic, static and dynamic models of the microgripper have been established and optimized considering the crucial parameters that determine the characteristics of the microgripper. Finite element analysis was conducted to evaluate the characteristics of the microgripper, and wire electro discharge machining technique was utilized to fabricate the monolithic structure of the microgripper mechanism. Experimental tests were carried out to investigate the performance of the microgripper and the results show that the microgripper can grasp microobjects with the maximum jaw motion stroke of 190 μm corresponding to the 100-V applied voltage. It has an amplification ratio of 22.8 and working mode frequency of 953 Hz

    A flexure-based kinematically decoupled micropositioning stage with a centimeter range dedicated to micro/nano manufacturing

    Get PDF
    Precision positioning stages with large strokes and high positioning accuracy are attractive for high-performance micro/nano manufacturing. This paper presents the dynamic design and characteristic investigation of a novel XY micropositioning stage. Firstly, the mechanism of the stage was introduced. The XY stage was directly driven by two linear motors, and the X- and Y- axes kinematic decoupling was realized through a novel flexible decoupling mechanism based on flexure hinges and preloaded spring. The dynamic model of the XY stage was established, and the influences of the rotational stiffness of the flexure hinge and the initial positions of the working table on the dynamic rotation of the positioning stage were investigated. The stiffness and geometric parameters of the flexure hinges were determined at the condition that the angular displacements of the working table were within ±0.5° with a motion stroke of ±25 mm. Finally the stage performance was investigated through simulation and experiments, the X- and Y-axes step responses, the rotation angular and positioning accuracy of the stage were obtained. The results show that the stage exhibits good performance and can be used for micro/nano manufacturing

    Modelling and analyses of helical milling process

    Get PDF
    A comparison between the geometry of the helical milling specialized tool and conventional end mill was firstly introduced. Furthermore, a mathematical model, in which the cutting area was divided into different cutting zones, was established to simulate the cutting depths and volume of the different cutting edges (three kinds) on specialized tool. Accordingly, a specific ratio between the volume removed by different edges and the total hole volume was derived mathematically and modeled using 3D modeling software SolidWorks. Based on the established models, the cutting depths and cutting volume ratio variation trends under different cutting parameters were analyzed. The results showed that the change rules of cutting depths were different in every cutting zone and influenced greatly by the cutting parameters. In addition, the cutting volume ratio changes with different cutting parameters, but it can only vary in certain range due to the structure of the helical milling specialized tool. The cutting volume ratio obtained from the established model shows a good agreement with the data modeled using SolidWorks, proving that the established model is appropriate. Moreover, the undeformed chip geometry was modeled and observed using SolidWorks. The undeformed chip showed a varying geometry with different cutting parameters and it can be optimized to obtain a good cutting condition during helical milling process

    An improved adaptive genetic algorithm for image segmentation and vision alignment used in microelectronic bonding

    Get PDF
    In order to improve the precision and efficiency of microelectronic bonding, this paper presents an improved adaptive genetic algorithm (IAGA) for the image segmentation and vision alignment of the solder joints in the microelectronic chips. The maximum between-cluster variance (OTSU) threshold segmentation method was adopted for the image segmentation of microchips, and the IAGA was introduced to the threshold segmentation considering the features of the images. The performance of the image segmentation was investigated by computational and experimental tests. The results show that the IAGA has faster convergence and better global optimality compared with standard genetic algorithm (SGA), and the quality of the segmented images becomes better by using the OTSU threshold segmentation method based on IAGA. On the basis of moment invariant approach, the microvision alignment was realized. Experiments were carried out to implement the microvision alignment of the solder joints in the microelectronic chips, and the results indicate that there are no alignment failures using the OTSU threshold segmentation method based on IAGA, which is superior to the OTSU method based on SGA in improving the precision and speed of the vision alignments

    Development of a piezo-driven 3-DOF stage with T-shape flexible hinge mechanism

    Get PDF
    This paper presents a 3-DOF (Degree of freedom) stage with T-shape flexible hinge mechanism for the applications in the precision measurement equipments and micro/nano manipulation systems. The stage is driven by three piezoelectric actuators (PEAs) and guided by a flexible hinge based mechanism with three symmetric T-shape hinges. The proposed T-shape flexible hinge mechanism can provide excellent planar motion capability with high stability, and thus guarantee the outstanding dynamics characteristics. The theoretical modeling of the stage was carried out and the stiffness and the dynamic resonance frequency have been obtained. The kinematic model of the 3-DOF stage was established and the workspace has been analyzed. The characteristics of the stage were investigated using finite element analysis (FEA). Experiments were conducted to examine the performance of the stage, through this stage, X-axis translational motion stroke of 6.9 µm, Y-axis translational motion stroke of 8.5 µm and rotational motion stroke along Z-axis of 289 µrad can be achieved. A hybrid feedforward/feedback control methodology has been proposed to eliminate the nonlinear hysteresis, the trajectory tracking performances and to reduce external disturbance of the 3-DOF stage

    A novel voice coil motor-driven compliant micropositioning stage based on flexure mechanism

    Get PDF
    This paper presents a 2-degrees of freedom flexure-based micropositioning stage with a flexible decoupling mechanism. The stage is composed of an upper planar stage and four vertical support links to improve the out-of-plane stiffness. The moving platform is driven by two voice coil motors, and thus it has the capability of large working stroke. The upper stage is connected with the base through six double parallel four-bar linkages mechanisms, which are orthogonally arranged to implement the motion decoupling in the x and y directions. The vertical support links with serially connected hook joints are utilized to guarantee good planar motion with heavy-loads. The static stiffness and the dynamic resonant frequencies are obtained based on the theoretical analyses. Finite element analysis is used to investigate the characteristics of the developed stage. Experiments are carried out to validate the established models and the performance of the developed stage. It is noted that the developed stage has the capability of translational motion stroke of 1.8 mm and 1.78 mm in working axes. The maximum coupling errors in the x and y directions are 0.65% and 0.82%, respectively, and the motion resolution is less than 200 nm. The experimental results show that the developed stage has good capability for trajectory tracking

    Modification of wetting property of Inconel 718 surface by nanosecond laser texturing

    Get PDF
    Topographic and wetting properties of Inconel 718 (IN718) surfaces were modified via nanosecond laser treatment. In order to investigate surface wetting behavior without additional post treatment, three kinds of microstructures were created on IN718 surfaces, including line pattern, grid pattern and spot pattern. From the viewpoint of surface morphology, the results show that laser ablated grooves and debris significantly altered the surface topography as well as surface roughness compared with the non-treated surfaces. The effect of laser parameters (such as laser scanning speed and laser average power) on surface features was also discussed. We have observed the treated surface of IN718 showed very high hydrophilicity just after laser treatment under ambient air condistion.And this hydrophicility property has changed rapidly to the other extreme; very high hydrophobicity over just about 20 days. Further experiments and analyses have been carried out in order to investigate this phenomena. Based on the XPS analysis, the results indicate that the change of wetting property from hydrophilic to hydrophobic over time is due to the surface chemistry modifications, especially carbon content. After the contact angles reached steady state, the maximum water contact angle (WCA) for line-patterned and grid-patterned surfaces increased to 152.3 1.2° and 156.8 1.1° with the corresponding rolling angle (RA) of 8.8 1.1° and 6.5 0.8°, respectively. These treated IN718 surfaces exhibited superhydrophobic property. However, the maximum WCA for the spot-patterned surfaces just increased to 140.8 2.8° with RA above 10°. Therefore, it is deduced that laser-inscribed modification of surface wettability has high sensitivity to surface morphology and surface chemical compositions. This work can be utilized to optimize the laser processing parameters so as to fabricate desired IN718 surfaces with hydrophobic or even superhydrophobic property and thus extend the applications of IN718 material in various fields
    corecore