192 research outputs found

    Glycine insertion makes yellow fluorescent protein sensitive to hydrostatic pressure

    Get PDF
    Fluorescent protein-based indicators for intracellular environment conditions such as pH and ion concentrations are commonly used to study the status and dynamics of living cells. Despite being an important factor in many biological processes, the development of an indicator for the physicochemical state of water, such as pressure, viscosity and temperature, however, has been neglected. We here found a novel mutation that dramatically enhances the pressure dependency of the yellow fluorescent protein (YFP) by inserting several glycines into it. The crystal structure of the mutant showed that the tyrosine near the chromophore flipped toward the outside of the β-can structure, resulting in the entry of a few water molecules near the chromophore. In response to changes in hydrostatic pressure, a spectrum shift and an intensity change of the fluorescence were observed. By measuring the fluorescence of the YFP mutant, we succeeded in measuring the intracellular pressure change in living cell. This study shows a new strategy of design to engineer fluorescent protein indicators to sense hydrostatic pressure

    Induction of DAN/TIR yeast cell wall mannoprotein genes in response to high hydrostatic pressure and low temperature

    Get PDF
    AbstractGlobal transcriptional profiles of Saccharomyces cerevisiae were studied following changes in growth conditions to high hydrostatic pressure and low temperature. These profiles were quantitatively very similar, encompassing 561 co-upregulated genes and 161 co-downregulated genes. In particular, expression of the DAN/TIR cell wall mannoprotein genes, which are generally expressed under hypoxia, were markedly upregulated by high pressure and low temperature, suggesting the overlapping regulatory networks of transcription. In support of the role of mannoproteins in cell wall integrity, cells acquired resistance against treatment with SDS, Zymolyase and lethal levels of high pressure when preincubated under high pressure and low temperature

    Molecular Responses to High Hydrostatic Pressure in Eukaryotes: Genetic Insights from Studies on Saccharomyces cerevisiae

    No full text
    High hydrostatic pressure is common mechanical stress in nature and is also experienced by the human body. Organisms in the Challenger Deep of the Mariana Trench are habitually exposed to pressures up to 110 MPa. Human joints are intermittently exposed to hydrostatic pressures of 3–10 MPa. Pressures less than 50 MPa do not deform or kill the cells. However, high pressure can have various effects on the cell’s biological processes. Although Saccharomyces cerevisiae is not a deep-sea piezophile, it can be used to elucidate the molecular mechanism underlying the cell’s responses to high pressures by applying basic knowledge of the effects of pressure on industrial processes involving microorganisms. We have explored the genes associated with the growth of S. cerevisiae under high pressure by employing functional genomic strategies and transcriptomics analysis and indicated a strong association between high-pressure signaling and the cell’s response to nutrient availability. This review summarizes the occurrence and significance of high-pressure effects on complex metabolic and genetic networks in eukaryotic cells and how the cell responds to increasing pressure by particularly focusing on the physiology of S. cerevisiae at the molecular level. Mechanosensation in humans has also been discussed

    Pressure Probes Physiology and Membrane Protein Dynamics in Yeast

    No full text

    Molecular Responses to High Hydrostatic Pressure in Eukaryotes: Genetic Insights from Studies on Saccharomyces cerevisiae

    No full text
    High hydrostatic pressure is common mechanical stress in nature and is also experienced by the human body. Organisms in the Challenger Deep of the Mariana Trench are habitually exposed to pressures up to 110 MPa. Human joints are intermittently exposed to hydrostatic pressures of 3–10 MPa. Pressures less than 50 MPa do not deform or kill the cells. However, high pressure can have various effects on the cell’s biological processes. Although Saccharomyces cerevisiae is not a deep-sea piezophile, it can be used to elucidate the molecular mechanism underlying the cell’s responses to high pressures by applying basic knowledge of the effects of pressure on industrial processes involving microorganisms. We have explored the genes associated with the growth of S. cerevisiae under high pressure by employing functional genomic strategies and transcriptomics analysis and indicated a strong association between high-pressure signaling and the cell’s response to nutrient availability. This review summarizes the occurrence and significance of high-pressure effects on complex metabolic and genetic networks in eukaryotic cells and how the cell responds to increasing pressure by particularly focusing on the physiology of S. cerevisiae at the molecular level. Mechanosensation in humans has also been discussed.</jats:p

    Hydrostatic Pressure Enhances Vital Staining with Carboxyfluorescein or Carboxydichlorofluorescein in <i>Saccharomyces cerevisiae</i> : Efficient Detection of Labeled Yeasts by Flow Cytometry

    Full text link
    ABSTRACT The extent of intracellular accumulation of the fluorescent dye carboxyfluorescein or carboxydichlorofluorescein (CDCF) in Saccharomyces cerevisiae was found to be increased 5- to 10-fold under a nonlethal hydrostatic pressure of 30 to 50 MPa. This observation was confirmed by analysis of individual labeled cells by flow cytometry. The pressure-induced enhancement of staining with CDCF required d -glucose and was markedly inhibited by 2-deoxy- d -glucose, suggesting that glucose metabolism has a role in the process. </jats:p
    corecore