29 research outputs found

    Transcriptomics and adaptive genomics of the asymptomatic bacteriuria Escherichia coli strain 83972

    Get PDF
    Escherichia coli strains are the major cause of urinary tract infections in humans. Such strains can be divided into virulent, UPEC strains causing symptomatic infections, and asymptomatic, commensal-like strains causing asymptomatic bacteriuria, ABU. The best-characterized ABU strain is strain 83972. Global gene expression profiling of strain 83972 has been carried out under seven different sets of environmental conditions ranging from laboratory minimal medium to human bladders. The data reveal highly specific gene expression responses to different conditions. A number of potential fitness factors for the human urinary tract could be identified. Also, presence/absence data of the gene expression was used as an adaptive genomics tool to model the gene pool of 83972 using primarily UPEC strain CFT073 as a scaffold. In our analysis, 96% of the transcripts filtered present in strain 83972 can be found in CFT073, and genes on six of the seven pathogenicity islands were expressed in 83972. Despite the very different patient symptom profiles, the two strains seem to be very similar. Genes expressed in CFT073 but not in 83972 were identified and can be considered as virulence factor candidates. Strain 83972 is a deconstructed pathogen rather than a commensal strain that has acquired fitness properties

    Modern software engineering methods for IP-QoS resource pool management

    No full text
    International Workshop IICS 2001 Ilmenau, Germany, June 21–22, 2001 Proceedings

    The sampling scheme matters : Pan troglodytes troglodytes and P-t. schweinfurthii are characterized by clinal genetic variation rather than a strong subspecies break

    No full text
    Populations of an organism living in marked geographical or evolutionary isolation from other populations of the same species are often termed subspecies and expected to show some degree of genetic distinctiveness. The common chimpanzee (Pan troglodytes) is currently described as four geographically delimited subspecies: the western (P. t. verus), the nigerian-cameroonian (P. t. ellioti), the central (P. t. troglodytes) and the eastern (P. t. schweinfurthii) chimpanzees. Although these taxa would be expected to be reciprocally monophyletic, studies have not always consistently resolved the central and eastern chimpanzee taxa. Most studies, however, used data from individuals of unknown or approximate geographic provenance. Thus, genetic data from samples of known origin may shed light on the evolutionary relationship of these subspecies. We generated microsatellite genotypes from noninvasively collected fecal samples of 185 central chimpanzees that were sampled across large parts of their range and analyzed them together with 283 published eastern chimpanzee genotypes from known localities. We observed a clear signal of isolation by distance across both subspecies. Further, we found that a large proportion of comparisons between groups taken from the same subspecies showed higher genetic differentiation than the least differentiated between-subspecies comparison. This proportion decreased substantially when we simulated a more clumped sampling scheme by including fewer groups. Our results support the general concept that the distribution of the sampled individuals can dramatically affect the inference of genetic population structure. With regard to chimpanzees, our results emphasize the close relationship of equatorial chimpanzees from central and eastern equatorial Africa and the difficult nature of subspecies definitions. Am J Phys Anthropol 156:181-191, 2015
    corecore