967 research outputs found
Role of lateral mantle flow in the evolution of subduction systems: insights from laboratory experiments
We present 3-D laboratory experiments constructed to investigate the pattern of mantle flow around a subducting slab under different boundary conditions. In particular we present a set of experiments, characterized by different conditions imposed at the trailing edge of the subducting plate (that is, plate fixed in the far field, plate detached in the far field, imposed plate motion). Experiments have been performed using a silicone slab floating inside a honey tank to simulate a thin viscous lithosphere subducting in a viscous mantle. For each set, we show differences between models that do or do not include the possibility of out-of-plane lateral flow in the mantle by varying the lateral boundary conditions. Our results illustrate how a subducting slab vertically confined over a 660-km equivalent depth can be influenced in its geometry and in its kinematics by the presence or absence of possible lateral pathways. On the basis of these results we show implications for natural subduction systems and we highlight the importance of suitable simulations of lateral viscosity variations to obtain a realistic simulation of the history of subductio
Subduction Duration and Slab Dip
The dip angles of slabs are among the clearest characteristics of subduction zones, but the factors that control them remain obscure. Here, slab dip angles and subduction parameters, including subduction duration, the nature of the overriding plate, slab age, and convergence rate, are determined for 153 transects along subduction zones for the present day. We present a comprehensive tabulation of subduction duration based on isotopic ages of arc initiation and stratigraphic, structural, plate tectonic and seismic indicators of subduction initiation. We present two ages for subduction zones, a long‐term age and a reinitiation age. Using cross correlation and multivariate regression, we find that (1) subduction duration is the primary parameter controlling slab dips with slabs tending to have shallower dips at subduction zones that have been in existence longer; (2) the long‐term age of subduction duration better explains variation of shallow dip than reinitiation age; (3) overriding plate nature could influence shallow dip angle, where slabs below continents tend to have shallower dips; (4) slab age contributes to slab dip, with younger slabs having steeper shallow dips; and (5) the relations between slab dip and subduction parameters are depth dependent, where the ability of subduction duration and overriding plate nature to explain observed variation decreases with depth. The analysis emphasizes the importance of subduction history and the long‐term regional state of a subduction zone in determining slab dip and is consistent with mechanical models of subduction
Subduction dynamics as revealed by trench migration
International audienceNew estimates of trench migration rates allow us to address the dynamics of trench migration and back-arc strain. We show that trench migration is primarily controlled by the subducting plate velocity V-sub, which largely depends on its age at the trench. Using the hot and weak arc to back-arc region as a strain sensor, we define neutral arcs characterized by the absence of significant strain, meaning places where the forces (slab pull, bending, and anchoring) almost balance along the interface between the plates. We show that neutral subduction zones satisfy the kinematic relation between trench and subducting plate absolute motions: V-t = 0.5V(sub) - 2.3 (in cm a(-1)) in the HS3 reference frame. Deformation occurs when the velocity combination deviates from kinematic equilibrium. Balancing the torque components of the forces acting at the trench indicates that stiff (old) subducting plates facilitate trench advance by resisting bending
Opposite subduction polarity in adjacent plate segments
Active and fossil subduction systems consisting of two adjacent plates with opposite retreating directions occur in several areas on Earth, as the Mediterranean or Western Pacific. The goal of this work is to better understand the first-order plate dynamics of these systems using the results of experimental models. The laboratory model is composed of two separate plates made of silicon putty representing the lithosphere, on top of a tank filled with glucose syrup representing the mantle. The set of experiments is designed to test the influence of the width of plates and the initial separation between them on the resulting trench velocities, deformation of plates, and mantle flow. Results show that the mantle flow induced by both plates is asymmetric relative to the axis of each plate causing a progressive merging of the toroidal cells that prevents a steady state phase of the subduction process and generates a net outward drag perpendicular to the plates. Trench velocities increase when trenches approach each other and decrease when they separate after their intersection. The trench curvature of both plates increases linearly with time during the entire evolution of the process regardless their width and initial separation. The interaction between the return flows associated with each retreating plate, particularly in the interplate region, is stronger for near plate configurations and correlates with variations of rollback velocities. We propose that the inferred first-order dynamics of the presented analog models can provide relevant clues to understand natural complex subduction systemsPeer ReviewedPostprint (published version
Unraveling topography around subduction zones from laboratory models
International audienceThe relief around subduction zones results from the interplay of dynamic processes that may locally exceed the (iso)static contributions. The viscous dissipation of the energy in and around subduction zones is capable of generating kilometer scale vertical ground movements. In order to evaluate dynamic topography in a selfconsistent subduction system, we carried out a set of laboratory experiments, wherein the lithosphere and mantle are simulated by means of Newtonian viscous materials, namely silicone putty and glucose syrup. Models are kept in their most simple form and are made of negative buoyancy plates, of variable width and thickness, freely plunging into the syrup. The surface of the model and the top of the slab are scanned in three dimensions. A forebulge systematically emerges from the bending of the viscous plate, adjacent to the trench. With a large wavelength, dynamic pressure offsets the foreside and backside of the slab by ~500 m on average. The suction, that accompanies the vertical descent of the slab depresses the surface on both sides. At a distance equal to the half-width of the slab, the topographic depression amounts to ~500 m on average and becomes negligible at a distance that equals the width of the slab. In order to explore the impact of slab rollback on the topography, the trailing edge of the plates is alternatively fixed to (fixed mode) and freed from (free mode) the end wall of the tank. Both the pressure and suction components of the topography are ~30% lower in the free mode, indicating that slab rollback fosters the dynamic subsidence of upper plates. Our models are compatible with first order observations of the topography around the East Scotia, Tonga, Kermadec and Banda subduction zones, which exhibit anomalous depths of nearly 1 km as compared to adjacent sea floor of comparable age
Water chemistry and trophic evaluation of Lake Albano (Central Italy): a four year water monitoring study
The crater lake Lake Albano is an increasingly diminishing water resource in terms of volume, the lake level has dropped more than four meters since the 1960s, and water quality resulting from elevated levels of nitrogen and phosphorus. The area of the lake, and the volcano as a whole, is also considered to be geologically hazardous due to continual shallow seismic activity, gaseous emissions and hydrothermal activity. Therefore, most research has been focussed on the geological aspects of the Albano lake system, whilst long-term limnological studies have been lacking. A meromictic classification was given to the lake, but this was based on one year studies of the surface water only. Presented and discussed are the results of a water chemistry and biological study of the full depth profile of Lake Albano from 2004 to 2008. During winter 2005-2006 the lake underwent a complete overturn, resulting in an influx of nutrient rich hypolimnetic water into the upper productive layers and oxygenated epilimnetic water into the deepest water layers. The effect of full overturn on the phytoplankton community is described and compared with those of meromictic years. The interplay between natural and anthropological processes on water quality and water usages is also discussed
Back-arc strain in subduction zones: Statistical observations versus numerical modeling
International audience1] Recent statistical analysis by Lallemand et al. (2008) of subduction zone parameters revealed that the back-arc deformation mode depends on the combination between the subducting (nu(sub)) and upper (nu(up)) plate velocities. No significant strain is recorded in the arc area if plate kinematics verifies nu(up) = 0.5 vsub - 2.3 (cm/a) in the HS3 reference frame. Arc spreading ( shortening) occurs if nu(up) is greater ( lower) than the preceding relationship. We test this statistical law with numerical models of subduction, by applying constant plate velocities far away from the subduction zone. The subducting lithosphere is free to deform at all depths. We quantify the force applied on the two converging plates to sustain constant surface velocities. The simulated rheology combined viscous (non-Newtonian) and brittle behaviors, and depends on water content. The influence of subduction rate vs is first studied for a fixed upper plate. After 950 km of convergence ( steady state slab pull), the transition from extensional to compressive stresses in the upper plate occurs for vs similar to 1.4 cm/a. The effect of upper plate velocity is then tested at constant subduction rate. Upper plate retreat ( advance) with respect to the trench increases extension ( compression) in the arc lithosphere and increases ( decreases) the subducting plate dip. Our modeling confirms the statistical kinematic relationship between vsub and nu(up) that describes the transition from extensional to compressive stresses in the arc lithosphere, even if the modeled law is shifted toward higher rates of upper plate retreat, using our set of physical parameters ( e. g., 100 km thick subducting oceanic plate) and short- term simulations. Our results make valid the choice of the HS3 reference frame for assessing plate velocity influence on arc tectonic regime. The subduction model suggests that friction along the interplate contact and the mantle Stokes reaction could be the two main forces competing against slab pull for upper mantle subductions. Besides, our simulations show that the arc deformation mode is strongly time dependent
Assessing the volcanic hazard for Rome. 40Ar/39Ar and In-SAR constraints on the most recent eruptive activity and present-day uplift at Colli Albani Volcanic District
We present new 40Ar/39Ar data which allow us to refine the recurrence time for the most recent eruptive activity occurred at Colli Albani Volcanic District (CAVD) and constrain its geographic area. Time elapsed since the last eruption (36 kyr) overruns the recurrence time (31 kyr) in the last 100 kyr. New interferometric synthetic aperture radar data, covering the years 1993–2010, reveal ongoing inflation with maximum uplift rates (>2 mm/yr) in the area hosting the most recent (<200 ka) vents, suggesting that the observed uplift might be caused by magma injection within the youngest plumbing system. Finally, we frame the present deformation within the structural pattern of the area of Rome, characterized by 50 m of regional uplift since 200 ka and by geologic evidence for a recent (<2000 years) switch of the local stress-field, highlighting that the precursors of a new phase of volcanic activity are likely occurring at the CAVD
- …
