65 research outputs found

    Faint AGN in z>~6 Lyman-break Galaxies Powered by Cold Accretion and Rapid Angular Momentum Transport

    Full text link
    We develop a radiation pressure-balanced model for the interstellar medium of high-redshift galaxies that describes many facets of galaxy formation at z>~6, including star formation rates and distributions and gas accretion onto central black holes. We first show that the vertical gravitational force in the disk of such a model is dominated by the disk self-gravity supported by the radiation pressure of ionizing starlight on gas. Constraining our model to reproduce the UV luminosity function of Lyman-break galaxies (LBGs), we limit the available parameter-space to wind mass-loading factors 1--4 times the canonical value for momentum-driven winds. We then focus our study by exploring the effects of different angular momentum transport mechanisms in the galactic disk and find that accretion driven by gravitational torques, such as from linear spiral waves or non-linear orbit crossings, can build up black hole masses by z=6 consistent with the canonical M-sigma relation with a duty cycle of unity, while accretion mediated by a local viscosity such as in an alpha-disk results in negligible BH accretion. Both gravitational torque models produce X-ray emission from active galactic nuclei (AGN) in high-redshift LBGs in excess of the estimated contribution from high-mass X-ray binaries. Using a recent analysis of deep Chandra observations by Cowie et al., we can already begin to rule out the most extreme regions of our parameter-space: the inflow velocity of gas through the disk must either be less than one percent of the disk circular velocity or the X-ray luminosity of the AGN must be substantially obscured. Moderately deeper future observations or larger sample sizes will be able to probe the more reasonable range of angular momentum transport models and obscuring geometries.Comment: 15 pages, 5 figures, submitted to MNRAS; Slighty simplified model with additional explanation, results unchange

    Extreme Galaxies During Reionization: Testing ISM and Disk Models

    Full text link
    We test the ability of equilibrium galactic disk and one-zone interstellar medium models to describe the physical and emission properties of quasar hosts, submillimeter galaxies, and Lyman-alpha emitters at z>~6. The size, line widths, star formation rates, black hole accretion rates, gas masses and temperatures, and the relationships between these properties are all well-described by our model, and we provide approximate fitting formulae for comparison with future observations. However, comparing our carbon line predictions to observations reveals differences between the ISM at low and high redshifts. Our underestimate of the [CII] line emission indicates either higher star formation efficiencies in high-redshift molecular clouds or less depletion of metals into dust at fixed metallicity. Further, our over-prediction of the CO(6-5)/CO(1-0) ratio suggests that molecular clouds in real high-redshift galaxies have a lower turbulent Mach number and more subthermal CO(6-5) emission than expected owing either to sizes smaller than the local Jeans mass or to a pressure support mechanism other than turbulence.Comment: Accepted in MNRAS; 19 pages; 10 figures; 4 table

    Transverse Sizes of CIV Absorption Systems Measured from Multiple QSO Sightlines

    Full text link
    We present tomography of the circum-galactic metal distribution at redshift 1.7 to 4.5 derived from echellete spectroscopy of binary quasars. We find CIV systems at similar redshifts in paired sightlines more often than expected for sightline-independent redshifts. As the separation of the sightlines increases from 36 kpc to 907 kpc, the amplitude of this clustering decreases. At the largest separations, the CIV systems cluster similar to Lyman-break galaxies (Adelberger et al. 2005a). The CIV systems are significantly less correlated than these galaxies, however, at separations less than R_1 ~ 0.42 +/- 0.15 h-1 comoving Mpc. Measured in real space, i.e., transverse to the sightlines, this length scale is significantly smaller than the break scale estimated from the line-of-sight correlation function in redshift space (Scannapieco et al. 2006a). Using a simple model, we interpret the new real-space measurement as an indication of the typical physical size of enriched regions. We adopt this size for enriched regions and fit the redshift-space distortion in the line-of-sight correlation function. The fitted velocity kick is consistent with the peculiar velocity of galaxies as determined by the underlying mass distribution and places an upper limit on the outflow (or inflow) speed of metals. The implied time scale for dispersing metals is larger than the typical stellar ages of Lyman-break galaxies (Shapley et al. 2001), and we argue that enrichment by galaxies at z > 4.3 played a greater role in dispersing metals. To further constrain the growth of enriched regions, we discuss empirical constraints on the evolution of the CIV correlation function with cosmic time. This study demonstrates the potential of tomography for measuring the metal enrichment history of the circum-galactic medium.Comment: 22 pages, 15 figures, 1 tabl

    Gridded and direct Epoch of Reionisation bispectrum estimates using the Murchison Widefield Array

    Full text link
    We apply two methods to estimate the 21~cm bispectrum from data taken within the Epoch of Reionisation (EoR) project of the Murchison Widefield Array (MWA). Using data acquired with the Phase II compact array allows a direct bispectrum estimate to be undertaken on the multiple redundantly-spaced triangles of antenna tiles, as well as an estimate based on data gridded to the uvuv-plane. The direct and gridded bispectrum estimators are applied to 21 hours of high-band (167--197~MHz; zz=6.2--7.5) data from the 2016 and 2017 observing seasons. Analytic predictions for the bispectrum bias and variance for point source foregrounds are derived. We compare the output of these approaches, the foreground contribution to the signal, and future prospects for measuring the bispectra with redundant and non-redundant arrays. We find that some triangle configurations yield bispectrum estimates that are consistent with the expected noise level after 10 hours, while equilateral configurations are strongly foreground-dominated. Careful choice of triangle configurations may be made to reduce foreground bias that hinders power spectrum estimators, and the 21~cm bispectrum may be accessible in less time than the 21~cm power spectrum for some wave modes, with detections in hundreds of hours.Comment: 19 pages, 10 figures, accepted for publication in PAS

    Normal Values of Circulating IGF-I Bioactivity in the Healthy Population: Comparison with five widely used IGF-I immunoassays

    Get PDF
    Background: IGF-I immunoassays are primarily used to estimate IGF-I bioactivity. Recently, an IGFI specific Kinase Receptor Activation Assay (KIRA) has been developed as an alternative method. However, no normative values have been established for the IGF-I KIRA. Objective: To establish normative values for the IGF-I KIRA in healthy adults. Design: Cross-sectional study in healthy non-fasting blood donors. Study participants: 426 healthy individuals (310 M, 116 F; age range: 18 – 79 yrs) Main outcome Measures: IGF-I bioactivity determined by the KIRA. Results were compared with total IGF-I, measured by five different IGF-I immunoassays. Results: Mean (± SD) IGF-I bioactivity was 423 (± 131) pmol/L and decreased with age (β = -3.4 pmol/L/yr, p < 0.001). In subjects younger than 55 yrs mean IGF-I bioactivity was significantly higher in women than in men. Above this age this relationship was inverse, suggesting a drop in IGF-I bioactivity after menopause. This drop was not reflected in total IGF-I levels. IGF-I bioactivity was significantly related to total IGF-I (rs varied between 0.46 – 0.52; P-values < 0.001). Conclusions: We established age-specific normative values for the IGF-I KIRA. We observed a significant drop in IGF-I bioactivity in women between 50 and 60 years, which was not perceived by IGF-I immunoassays. The IGF-I KIRA, when compared to IGF-I immunoassays, theoretically has the advantage that it measures net effects of IGF-binding proteins on IGF-I receptor activation. However, it has to be proven whether information obtained by the IGF-I KIRA is clinically more relevant than measurements obtained by IGF-I immunoassays

    Quasars Probing Quasars III: New Clues to Feedback, Quenching, and the Physics of Massive Galaxy Formation

    Full text link
    Galaxies hosting z~2 quasars are the high-zz progenitors of today's massive `red-and-dead' galaxies. With close pairs of quasars at different redshifts, a background quasar can be used to study a foreground quasar's halo gas in absorption, providing a wealth of information about feedback, quenching, and the physics of massive galaxy formation. We present a Keck/HIRES spectrum of the bright background quasar in a projected pair with angular separation 13.3" corresponding to 108kpc at the redshift of the foreground quasar z_fg=2.4360 +/- 0.0005, precisely determined from Gemini/GNIRS near-IR spectroscopy. Our echelle spectrum reveals optically thick gas (NHI~10^19.7), coincident with the foreground quasar redshift. The ionic transitions of associated metal-lines reveal the following properties of the foreground quasar's halo: (1) the kinematics are extreme with absorption extending to +780km/s relative to z_fg; (2) the metallicity is nearly solar; (3) the temperature of the predominantly ionized gas is T<~20,000K; (4) the electron density is n_e~1 cm^-3 indicating a characteristic size ~10 - 100pc for the absorbing `clouds'; (7) there is a negligible amount of warm gas 10^5K < T < 10^6K; (8) the gas is unlikely illuminated by the foreground quasar, implying anisotropic or intermittent emission. The mass of cold T~10^4K gas implied by our observations is significant, amounting to a few percent of the total expected baryonic mass density of the foreground quasar's dark halo at r~100kpc. The origin of this material is still unclear, and we discuss several possibilities in the context of current models of feedback and massive galaxy formation.Comment: Accepted to ApJ. 38 pages, 11 figure

    The flatness and sudden evolution of the intergalactic ionizing background

    Get PDF
    The ionizing background of cosmic hydrogen is an important probe of the sources and absorbers of ionizing radiation in the post-reionization universe. Previous studies show that the ionization rate should be very sensitive to changes in the source population: as the emissivity rises, absorbers shrink in size, increasing the ionizing mean free path and, hence, the ionizing background. By contrast, observations of the ionizing background find a very flat evolution from z~2-5, before falling precipitously at z~6. We resolve this puzzling discrepancy by pointing out that, at z~2-5, optically thick absorbers are associated with the same collapsed halos that host ionizing sources. Thus, an increasing abundance of galaxies is compensated for by a corresponding increase in the absorber population, which moderates the instability in the ionizing background. However, by z~5-6, gas outside of halos dominates the absorption, the coupling between sources and absorbers is lost, and the ionizing background evolves rapidly. Our halo based model reproduces observations of the ionizing background, its flatness and sudden decline, as well as the redshift evolution of the ionizing mean free path. Our work suggests that, through much of their history, both star formation and photoelectric opacity in the universe track halo growth

    The <i>Pratylenchus penetrans</i> transcriptome as a source for the development of alternative control strategies:mining for putative genes involved in parasitism and evaluation of <i>in planta</i> RNAi

    Get PDF
    The root lesion nematode Pratylenchus penetrans is considered one of the most economically important species within the genus. Host range studies have shown that nearly 400 plant species can be parasitized by this species. To obtain insight into the transcriptome of this migratory plant-parasitic nematode, we used Illumina mRNA sequencing analysis of a mixed population, as well as nematode reads detected in infected soybean roots 3 and 7 days after nematode infection. Over 140 million paired end reads were obtained for this species, and de novo assembly resulted in a total of 23,715 transcripts. Homology searches showed significant hit matches to 58% of the total number of transcripts using different protein and EST databases. In general, the transcriptome of P. penetrans follows common features reported for other root lesion nematode species. We also explored the efficacy of RNAi, delivered from the host, as a strategy to control P. penetrans, by targeted knock-down of selected nematode genes. Different comparisons were performed to identify putative nematode genes with a role in parasitism, resulting in the identification of transcripts with similarities to other nematode parasitism genes. Focusing on the predicted nematode secreted proteins found in this transcriptome, we observed specific members to be up-regulated at the early time points of infection. In the present study, we observed an enrichment of predicted secreted proteins along the early time points of parasitism by this species, with a significant number being pioneer candidate genes. A representative set of genes examined using RT-PCR confirms their expression during the host infection. The expression patterns of the different candidate genes raise the possibility that they might be involved in critical steps of P. penetrans parasitism. This analysis sheds light on the transcriptional changes that accompany plant infection by P. penetrans, and will aid in identifying potential gene targets for selection and use to design effective control strategies against root lesion nematodes
    corecore