649 research outputs found
A constructive and unifying framework for zero-bit watermarking
In the watermark detection scenario, also known as zero-bit watermarking, a
watermark, carrying no hidden message, is inserted in content. The watermark
detector checks for the presence of this particular weak signal in content. The
article looks at this problem from a classical detection theory point of view,
but with side information enabled at the embedding side. This means that the
watermark signal is a function of the host content. Our study is twofold. The
first step is to design the best embedding function for a given detection
function, and the best detection function for a given embedding function. This
yields two conditions, which are mixed into one `fundamental' partial
differential equation. It appears that many famous watermarking schemes are
indeed solution to this `fundamental' equation. This study thus gives birth to
a constructive framework unifying solutions, so far perceived as very
different.Comment: submitted to IEEE Trans. on Information Forensics and Securit
Worst case attacks against binary probabilistic traitor tracing codes
An insightful view into the design of traitor tracing codes should
necessarily consider the worst case attacks that the colluders can lead. This
paper takes an information-theoretic point of view where the worst case attack
is defined as the collusion strategy minimizing the achievable rate of the
traitor tracing code. Two different decoders are envisaged, the joint decoder
and the simple decoder, as recently defined by P. Moulin
\cite{Moulin08universal}. Several classes of colluders are defined with
increasing power. The worst case attack is derived for each class and each
decoder when applied to Tardos' codes and a probabilistic version of the
Boneh-Shaw construction. This contextual study gives the real rates achievable
by the binary probabilistic traitor tracing codes. Attacks usually considered
in literature, such as majority or minority votes, are indeed largely
suboptimal. This article also shows the utmost importance of the time-sharing
concept in a probabilistic codes.Comment: submitted to IEEE Trans. on Information Forensics and Securit
Towards joint decoding of binary Tardos fingerprinting codes
The class of joint decoder of probabilistic fingerprinting codes is of utmost
importance in theoretical papers to establish the concept of fingerprint
capacity. However, no implementation supporting a large user base is known to
date. This article presents an iterative decoder which is, as far as we are
aware of, the first practical attempt towards joint decoding. The
discriminative feature of the scores benefits on one hand from the
side-information of previously accused users, and on the other hand, from
recently introduced universal linear decoders for compound channels. Neither
the code construction nor the decoder make precise assumptions about the
collusion (size or strategy). The extension to incorporate soft outputs from
the watermarking layer is straightforward. An extensive experimental work
benchmarks the very good performance and offers a clear comparison with
previous state-of-the-art decoders.Comment: submitted to IEEE Trans. on Information Forensics and Security. -
typos corrected, one new plot, references added about ECC based
fingerprinting code
Le problème des papillons piqueurs de fruits est posé en Côte d'Ivoire
Inventaire et importance relative des différents genres et espèces identifiés. Ces papillons attaquent les fruits d'agrumes et d'espèces diverses qui, ainsi tombent avant maturité. Les dégâts peuvent être importants dans certaines plantations industrielles de bergamotiers pour l'essence. Citrons et limes ne sont pas attaqués en Côte d'Ivoir
Orientation covariant aggregation of local descriptors with embeddings
Image search systems based on local descriptors typically achieve orientation
invariance by aligning the patches on their dominant orientations. Albeit
successful, this choice introduces too much invariance because it does not
guarantee that the patches are rotated consistently. This paper introduces an
aggregation strategy of local descriptors that achieves this covariance
property by jointly encoding the angle in the aggregation stage in a continuous
manner. It is combined with an efficient monomial embedding to provide a
codebook-free method to aggregate local descriptors into a single vector
representation. Our strategy is also compatible and employed with several
popular encoding methods, in particular bag-of-words, VLAD and the Fisher
vector. Our geometric-aware aggregation strategy is effective for image search,
as shown by experiments performed on standard benchmarks for image and
particular object retrieval, namely Holidays and Oxford buildings.Comment: European Conference on Computer Vision (2014
Memory vectors for similarity search in high-dimensional spaces
We study an indexing architecture to store and search in a database of
high-dimensional vectors from the perspective of statistical signal processing
and decision theory. This architecture is composed of several memory units,
each of which summarizes a fraction of the database by a single representative
vector. The potential similarity of the query to one of the vectors stored in
the memory unit is gauged by a simple correlation with the memory unit's
representative vector. This representative optimizes the test of the following
hypothesis: the query is independent from any vector in the memory unit vs. the
query is a simple perturbation of one of the stored vectors.
Compared to exhaustive search, our approach finds the most similar database
vectors significantly faster without a noticeable reduction in search quality.
Interestingly, the reduction of complexity is provably better in
high-dimensional spaces. We empirically demonstrate its practical interest in a
large-scale image search scenario with off-the-shelf state-of-the-art
descriptors.Comment: Accepted to IEEE Transactions on Big Dat
An Asymmetric Public Detection Watermarking Technique
International audienceThe new watermarking technique presented in this paper is an example of an asymmetric public detection scheme
BLIND DECODER FOR BINARY PROBABILISTIC TRAITOR TRACING CODES
This paper presents a new decoder for probabilistic binary traitor tracing codes which is based on classical hypothesis testing and estimation theory. This new decoder is blind, in the sense of ignoring a priori the collusion attack it is facing. It basically performs a joint estimation of the collusion channel and the probability that each user takes part in the collusion. The experimental results shown in the paper have been obtained with the classical Tardos code, although the proposed decoder works with arbitrary probabilistic binary codes. Another remarkable advantage of this blind decoder is its ability to successfully cope with collusion channels far more general than the classical Marking Assumption, including channels that produce erasures and random decoding errors. Index Terms — Traitor tracing, Tardos code, collusion channel estimation, likelihood ratio, optimal decoding
Watermarking security part I: theory
This article proposes a theory of watermarking security based on a cryptanalysis point of view. The main idea is that information about the secret key leaks from the observations, for instance watermarked pieces of content, available to the opponent. Tools from information theory (Shannon's mutual information and Fisher's information matrix) can measure this leakage of information. The security level is then defined as the number of observations the attacker needs to successfully estimate the secret key. This theory is applied to common watermarking methods: the substitutive scheme and spread spectrum based techniques. Their security levels are calculated against three kinds of attack
- …
