944 research outputs found

    Electric Dipolar Susceptibility of the Anderson-Holstein Model

    Full text link
    The temperature dependence of electric dipolar susceptibility \chi_P is discussed on the basis of the Anderson-Holstein model with the use of a numerical renormalization group (NRG) technique. Note that P is related with phonon Green's function D. In order to obtain correct temperature dependence of P at low temperatures, we propose a method to evaluate P through the Dyson equation from charge susceptibility \chi_c calculated by the NRG, in contrast to the direct NRG calculation of D. We find that the irreducible charge susceptibility estimated from \chi_c agree with the perturbation calculation, suggesting that our method works well.Comment: 4 pages, 4 figure

    Analyses of pyrimidine and purine bases by a combination of paper chromatography and time of flight mass spectrometry

    Get PDF
    Paper chromatography and mass spectrometry for analyses of pyrimidine and purine base

    Electron Mass Enhancement due to Anharmonic Local Phonons

    Full text link
    In order to understand how electron effective mass is enhanced by anharmonic local oscillation of an atom in a cage composed of other atoms, i.e., {\it rattling}, we analyze anharmonic Holstein model by using a Green's function method. Due to the evaluation of an electron mass enhancement factor ZZ, we find that ZZ becomes maximum when zero-point energy is comparable with potential height at which the amplitude of oscillation is rapidly enlarged. Cooperation of such quantum and rattling effects is considered to be a key issue to explain the electron mass enhancement in electron-rattling systems.Comment: 3 pages, 3 figures, to appear in J. Phys. Soc. Jpn. Suppl. (Proceedings for International Conference on Heavy Electrons

    Four-electron shell structures and an interacting two-electron system in carbon nanotube quantum dots

    Full text link
    Low-temperature transport measurements have been carried out on single-wall carbon nanotube quantum dots in a weakly coupled regime in magnetic fields up to 8 Tesla. Four-electron shell filling was observed, and the magnetic field evolution of each Coulomb peak was investigated, in which magnetic field induced spin flip and resulting spin polarization were observed. Excitation spectroscopy measurements have revealed Zeeman splitting of single particle states for one electron in the shell, and demonstrated singlet and triplet states with direct observation of the exchange splitting at zero-magnetic field for two electrons in the shell, the simplest example of the Hund's rule. The latter indicates the direct analogy to an artificial He atom.Comment: 4 pages, 3 figures, submitted to Physical Review Letter

    Heavy-Electron Formation and Bipolaronic Transition in the Anharmonic Holstein Model

    Full text link
    The emergence of the bipolaronic phase and the formation of the heavy-electron state in the anharmonic Holstein model are investigated using the dynamical mean-field theory in combination with the exact diagonalization method. For a weak anharmonicity, it is confirmed that the first-order polaron-bipolaron transition occurs from the observation of a discontinuity in the behavior of several physical quantities. When the anharmonicity is gradually increased, the polaron-bipolaron transition temperature is reduced as well as the critical values of the electron-phonon coupling constant for polaron-bipolaron transition. For a strong anharmonicity, the polaron-bipolaron transition eventually changes to a crossover behavior. The effect of anharmonicity on the formation of the heavy-electron state near the polaron-bipolaron transition and the crossover region is discussed in detail.Comment: 11 pages, 13 figure

    Pressure-tuning of the c-f hybridization in Yb metal detected by infrared spectroscopy up to 18 GPa

    Full text link
    It has been known that the elemental Yb, a divalent metal at mbient pressure, becomes a mixed-valent metal under external pressure, with its valence reaching ~2.6 at 30 GPa. In this work, infrared spectroscopy has been used to probe the evolution of microscopic electronic states associated with the valence crossover in Yb at external pressures up to 18 GPa. The measured infrared reflectivity spectrum R(w) of Yb has shown large variations with pressure. In particular, R(w) develops a deep minimum in the mid-infrared, which shifts to lower energy with increasing pressure. The dip is attributed to optical absorption due to a conduction c-f electron hybridization state, similarly to those previously observed for heavy fermion compounds. The red shift of the dip indicates that the cc-ff hybridization decreases with pressure, which is consistent with the increase of valence.Comment: 2 pages, to appear in J. Phys. Soc. Jpn. Supp

    Strong-Coupling Theory of Rattling-Induced Superconductivity

    Full text link
    In order to clarify the mechanism of the enhancement of superconducting transition temperature TcT_{\rm c} due to anharmonic local oscillation of a guest ion in a cage composed of host atoms, i.e., {\it rattling}, we analyze the anharmonic Holstein model by applying the Migdal-Eliashberg theory. From the evaluation of the normal-state electron-phonon coupling constant, it is found that the strong coupling state is developed, when the bottom of a potential for the guest ion becomes wide and flat. Then, TcT_{\rm c} is enhanced with the increase of the anharmonicity in the potential, although TcT_{\rm c} is rather decreased when the potential becomes a double-well type due to very strong anharmonicity. From these results, we propose a scenario of anharmonicity-controlled strong-coupling tendency for superconductivity induced by rattling. We briefly discuss possible relevance of the present scenario with superconductivity in β\beta-pyrochlore oxides.Comment: 8 pages, 6 figure

    Faddeev calculations for the A=5,6 Lambda-Lambda hypernuclei

    Full text link
    Faddev calculations are reported for Lambda-Lambda-5H, Lambda-Lambda-5He and Lambda-Lambda-6He in terms of two Lambda hyperons plus the respective nuclear clusters, using Lambda-Lambda central potentials considered in past non-Faddeev calculations of Lambda-Lambda-6He. The convergence with respect to the partial-wave expansion is studied, and comparison is made with some of these Lambda-Lambda hypernuclear calculations. The Lambda-Lambda Xi-N mixing effect is briefly discussed.Comment: submitted for publicatio

    Light Lambda-Lambda Hypernuclei and the Onset of Stability for Lambda-Xi Hypernuclei

    Full text link
    New Faddeev-Yakubovsky calculations for light Lambda-Lambda hypernuclei are presented in order to assess the self consistency of the Lambda-Lambda hypernuclear binding-energy world data and the implied strength of the Lambda-Lambda interaction, in the wake of recent experimental reports on Lambda-Lambda-4H and Lambda-Lambda-6He. Using Gaussian soft-core simulations of Nijmegen one-boson-exchange model interactions, the Nijmegen soft-core model NSC97 simulations are found close to reproducing the recently reported binding energy of Lambda-Lambda-6He, but not those of other species. For stranger systems, Faddeev calculations of light Lambda-Xi hypernuclei, using a simulation of the strongly attractive Lambda-Xi interactions due to the same model, suggest that Lambda-Xi-6He marks the onset of nuclear stability for Xi hyperons.Comment: 5 pages, 3 postscript figures; fig.2 replaced, minor changes, accepted as Rapid Communication in PR
    corecore