25 research outputs found

    Effects of Titanium Dioxide Nanoparticles on Porcine Prepubertal Sertoli Cells: An “In Vitro” Study

    Get PDF
    The increasing use of nanomaterials in a variety of industrial, commercial, medical products, and their environmental spreading has raised concerns regarding their potential toxicity on human health. Titanium dioxide nanoparticles (TiO2 NPs) represent one of the most commonly used nanoparticles. Emerging evidence suggested that exposure to TiO2 NPs induced reproductive toxicity in male animals. In this in vitro study, porcine prepubertal Sertoli cells (SCs) have undergone acute (24 h) and chronic (from 1 up to 3 weeks) exposures at both subtoxic (5 μg/ml) and toxic (100 μg/ml) doses of TiO2 NPs. After performing synthesis and characterization of nanoparticles, we focused on SCs morphological/ultrastructural analysis, apoptosis, and functionality (AMH, inhibin B), ROS production and oxidative DNA damage, gene expression of antioxidant enzymes, proinflammatory/immunomodulatory cytokines, and MAPK kinase signaling pathway. We found that 5 μg/ml TiO2 NPs did not induce substantial morphological changes overtime, but ultrastructural alterations appeared at the third week. Conversely, SCs exposed to 100 μg/ml TiO2 NPs throughout the whole experiment showed morphological and ultrastructural modifications. TiO2 NPs exposure, at each concentration, induced the activation of caspase-3 at the first and second week. AMH and inhibin B gene expression significantly decreased up to the third week at both concentrations of nanoparticles. The toxic dose of TiO2 NPs induced a marked increase of intracellular ROS and DNA damage at all exposure times. At both concentrations, the increased gene expression of antioxidant enzymes such as SOD and HO-1 was observed whereas, at the toxic dose, a clear proinflammatory stress was evaluated along with the steady increase in the gene expression of IL-1α and IL-6. At both concentrations, an increased phosphorylation ratio of p-ERK1/2 was observed up to the second week followed by the increased phosphorylation ratio of p-NF-kB in the chronic exposure. Although in vitro, this pilot study highlights the adverse effects even of subtoxic dose of TiO2 NPs on porcine prepubertal SCs functionality and viability and, more importantly, set the basis for further in vivo studies, especially in chronic exposure at subtoxic dose of TiO2 NPs, a condition closer to the human exposure to this nanoagent

    Functional Electrical Stimulation: A Possible Strategy to Improve Muscle Function in Central Core Disease?

    Get PDF
    Central Core Disease (CCD) is a congenital myopathy characterized by presence of amorphous central areas (or cores) lacking glycolytic/oxidative enzymes and mitochondria in skeletal muscle fibers. Most CCD families are linked to mutations in ryanodine receptor type-1 (RYR1), the gene encoding for the sarcoplasmic reticulum (SR) Ca2+ release channel of skeletal muscle. As no treatments are available for CCD, currently management of patients is essentially based on a physiotherapic approaches. Functional electrical stimulation (FES) is a technique used to deliver low energy electrical impulses to artificially stimulate selected skeletal muscle groups. Here we tested the efficacy of FES in counteracting muscle loss and improve function in the lower extremities of a 55-year-old female patient which was diagnosed with CCD at the age of 44. Genetic screening of the RyR1 gene identified a missense mutation (c.7354C>T) in exon 46 resulting in an amino acid substitution (p.R2452W) and a duplication (c.12853_12864dup12) in exon 91. The patient was treated with FES for 26 months and subjected before, during, and after training to a series of functional and structural assessments: measurement of maximum isometric force of leg extensor muscles, magnetic resonance imaging, a complete set of functional tests to assess mobility in activities of daily living, and analysis of muscle biopsies by histology and electron microscopy. All results point to an improvement in muscle structure and function induced by FES suggesting that this approach could be considered as an additional supportive measure to maintain/improve muscle function (and possibly reduce muscle loss) in CCD patients

    Small cargo proteins and large aggregates can traverse the Golgi by a common mechanism without leaving the lumen of cisternae

    Get PDF
    Procollagen (PC)-I aggregates transit through the Golgi complex without leaving the lumen of Golgi cisternae. Based on this evidence, we have proposed that PC-I is transported across the Golgi stacks by the cisternal maturation process. However, most secretory cargoes are small, freely diffusing proteins, thus raising the issue whether they move by a transport mechanism different than that used by PC-I. To address this question we have developed procedures to compare the transport of a small protein, the G protein of the vesicular stomatitis virus (VSVG), with that of the much larger PC-I aggregates in the same cell. Transport was followed using a combination of video and EM, providing high resolution in time and space. Our results reveal that PC-I aggregates and VSVG move synchronously through the Golgi at indistinguishable rapid rates. Additionally, not only PC-I aggregates (as confirmed by ultrarapid cryofixation), but also VSVG, can traverse the stack without leaving the cisternal lumen and without entering Golgi vesicles in functionally relevant amounts. Our findings indicate that a common mechanism independent of anterograde dissociative carriers is responsible for the traffic of small and large secretory cargo across the Golgi stack

    The 50-nm Free Vesicles Visible in Saccharomyces cerevisiae Are Not COPII-Dependent

    No full text
    According to the current dogma, ER–Golgi transport is mediated by COPII-coated vesicles. However, numerous contradictions have emerged in this field. In this study, we demonstrate that Saccharomyces cerevisiae contains three distinct types of membrane spheres, with diameters of approximately 35–45 nm, 47–52 nm, and over 65 nm, respectively. The first type is Sso1-positive and primary associated with clathrin-positive endocytosis invaginations, which may function as exit sites for secretory soluble cargos. The second population is GOS1-positive and COPI-dependent. The third population represents secretory granules. Furthermore, we propose that several cornerstone studies supporting the COPII-vesicle model can have alternative interpretations. Our findings suggest that the predominant model of intracellular transport in Saccharomyces cerevisiae is the “kiss-and-run” mechanism

    Procollagen Traverses the Golgi Stack without Leaving the Lumen of Cisternae Evidence for Cisternal Maturation

    Get PDF
    AbstractNewly synthesized procollagen type I (PC) assembles into 300 nm rigid, rod-like triple helices in the lumen of the endoplasmic reticulum. This oligomeric complex moves to the Golgi and forms large electron-dense aggregates. We have monitored the transport of PC along the secretory pathway. We show that PC moves across the Golgi stacks without ever leaving the lumen of the Golgi cisternae. During transport from the endoplasmic reticulum to the Golgi, PC is found within tubular-saccular structures greater than 300 nm in length. Thus, supermolecular cargoes such as PC do not utilize the conventional vesicle-mediated transport to traverse the Golgi stacks. Our results imply that PC moves in the anterograde direction across the Golgi complex by a process involving progressive maturation of Golgi cisternae
    corecore