57 research outputs found
CylinderTag: An Accurate and Flexible Marker for Cylinder-Shape Objects Pose Estimation Based on Projective Invariants
High-precision pose estimation based on visual markers has been a thriving
research topic in the field of computer vision. However, the suitability of
traditional flat markers on curved objects is limited due to the diverse shapes
of curved surfaces, which hinders the development of high-precision pose
estimation for curved objects. Therefore, this paper proposes a novel visual
marker called CylinderTag, which is designed for developable curved surfaces
such as cylindrical surfaces. CylinderTag is a cyclic marker that can be firmly
attached to objects with a cylindrical shape. Leveraging the manifold
assumption, the cross-ratio in projective invariance is utilized for encoding
in the direction of zero curvature on the surface. Additionally, to facilitate
the usage of CylinderTag, we propose a heuristic search-based marker generator
and a high-performance recognizer as well. Moreover, an all-encompassing
evaluation of CylinderTag properties is conducted by means of extensive
experimentation, covering detection rate, detection speed, dictionary size,
localization jitter, and pose estimation accuracy. CylinderTag showcases
superior detection performance from varying view angles in comparison to
traditional visual markers, accompanied by higher localization accuracy.
Furthermore, CylinderTag boasts real-time detection capability and an extensive
marker dictionary, offering enhanced versatility and practicality in a wide
range of applications. Experimental results demonstrate that the CylinderTag is
a highly promising visual marker for use on cylindrical-like surfaces, thus
offering important guidance for future research on high-precision visual
localization of cylinder-shaped objects. The code is available at:
https://github.com/wsakobe/CylinderTag.Comment: 15 pages, 22 figures. This work has been submitted to the IEEE for
possible publication. Copyright may be transferred without notice, after
which this version may no longer be accessibl
Preliminary study on the osseointegration effects of contactless automated implant cavity preparation via femtosecond laser ablation
Microrobots were used to control the femtosecond laser ablation of bone tissues to prepare implant cavities for dental implant surgery. The method was optimized through depth-of-cut experiments of ex vivo rabbit femurs, and the optimized method was used to prepare implant cavities on the left femurs of eight live rabbits. A power of 10 W and a scanning rate of 4000 mm/s were found to be optimal. After seven days of osteoinduction, the expression of collagen type I was significantly higher in the experimental group than in the control group (manually drilled implant cavities). The bone–implant contacts of the experimental group at 4 and 8 weeks were 9.65% and 23.08%, respectively.</jats:p
Changes in Crystal Phase, Morphology, and Flexural Strength of As-Sintered Translucent Monolithic Zirconia Ceramic Modified by Femtosecond Laser
Conventional bonding technology suitable for silica-based ceramics is not applicable to zirconia, due to its polycrystalline phase composition, chemical stability, and acid corrosion resistance. The development of an effective treatment to improve its surface roughness and mechanical properties remains an unresolved problem. Therefore, to solve this problem, this in vitro study evaluated the changes in surface morphology and flexural strength of translucent monolithic zirconia surfaces treated with femtosecond laser technology. As-sintered translucent zirconia specimens were subjected to airborne particle abrasion and femtosecond laser treatments, while control group specimens received no treatment. After treatment, the roughness and morphology of the treated zirconia surfaces were examined. The flexural strength and X-ray diffraction of the treated specimens were measured and analyzed. Statistical inferential analysis included one-way analysis of variance at a set significance level of 5%. The surface roughness after femtosecond laser treatment was significantly improved when compared with the control group and the group that received the airborne particle abrasion treatment (p < 0.05). In comparison with the airborne particle abrasion group, the flexural strength of the group that received the femtosecond laser treatment was significantly improved (p < 0.05). The femtosecond laser approach using appropriate parameters enhanced the roughness of the zirconia without reducing its flexural strength; therefore, this approach offers potential for the treatment of zirconia surfaces
A Novel Method for Adjusting the Taper and Adaption of Automatic Tooth Preparations with a High-Power Femtosecond Laser
This study explored the effect of the light-off delay setting in a robotically controlled femtosecond laser on the taper and adaption of resin tooth preparations. Thirty resin teeth (divided into six equal groups) were studied under different light-off delay conditions. Tapers from six vertical sections of the teeth were measured and compared among the light-off delay groups. The mean taper decreased from 39.268° ± 4.530° to 25.393° ± 5.496° as the light-off delay increased (p < 0.05). The average distance between the occlusal surfaces of the scanned data and the predesigned preparation data decreased from 0.089 ± 0.005 to 0.013 ± 0.030 μm as the light-off delay increased (p < 0.05). The light-off delay of the femtosecond laser is correlated with the taper and adaption of automatic tooth preparations; this setting needs to be considered during automatic tooth preparation.</jats:p
A Novel Method for Adjusting the Taper and Adaption of Automatic Tooth Preparations with a High-Power Femtosecond Laser
This study explored the effect of the light-off delay setting in a robotically controlled femtosecond laser on the taper and adaption of resin tooth preparations. Thirty resin teeth (divided into six equal groups) were studied under different light-off delay conditions. Tapers from six vertical sections of the teeth were measured and compared among the light-off delay groups. The mean taper decreased from 39.268° ± 4.530° to 25.393° ± 5.496° as the light-off delay increased (p < 0.05). The average distance between the occlusal surfaces of the scanned data and the predesigned preparation data decreased from 0.089 ± 0.005 to 0.013 ± 0.030 μm as the light-off delay increased (p < 0.05). The light-off delay of the femtosecond laser is correlated with the taper and adaption of automatic tooth preparations; this setting needs to be considered during automatic tooth preparation
Changes in Crystal Phase, Morphology, and Flexural Strength of As-Sintered Translucent Monolithic Zirconia Ceramic Modified by Femtosecond Laser
Conventional bonding technology suitable for silica-based ceramics is not applicable to zirconia, due to its polycrystalline phase composition, chemical stability, and acid corrosion resistance. The development of an effective treatment to improve its surface roughness and mechanical properties remains an unresolved problem. Therefore, to solve this problem, this in vitro study evaluated the changes in surface morphology and flexural strength of translucent monolithic zirconia surfaces treated with femtosecond laser technology. As-sintered translucent zirconia specimens were subjected to airborne particle abrasion and femtosecond laser treatments, while control group specimens received no treatment. After treatment, the roughness and morphology of the treated zirconia surfaces were examined. The flexural strength and X-ray diffraction of the treated specimens were measured and analyzed. Statistical inferential analysis included one-way analysis of variance at a set significance level of 5%. The surface roughness after femtosecond laser treatment was significantly improved when compared with the control group and the group that received the airborne particle abrasion treatment (p < 0.05). In comparison with the airborne particle abrasion group, the flexural strength of the group that received the femtosecond laser treatment was significantly improved (p < 0.05). The femtosecond laser approach using appropriate parameters enhanced the roughness of the zirconia without reducing its flexural strength; therefore, this approach offers potential for the treatment of zirconia surfaces.</jats:p
Digital evaluation of the effect of nanosilica-lithium spray coating on the internal and marginal fit of high translucent zirconia crowns
Accuracy of chair-side fused-deposition modelling for dental applications
Purpose
The purpose of this paper is to establish a chair-side design and production method for a tooth-supported fixed implant guide and to evaluate its accuracy.
Design/methodology/approach
Three-dimensional (3D) data of the alveolar ridge, adjacent teeth and antagonistic teeth were acquired from models of the edentulous area of 30 patients. The implant guides were then constructed using self-developed computer-aided design software and chair-side fused deposition modelling 3D-printing and positioned on a dental model. A model scanner was used to acquire 3D data of the positioned implant guides, and the overall error was then evaluated.
Findings
The overall error was 0.599 ± 0.146 mm (n = 30). One-way ANOVA revealed no statistical differences among the 30 implant guides. The gap between the occlusal surface of the teeth covering and the tissue surface of the implant guide was measured. The maximum gap after positioning of the implant guide was 0.341 mm (mean, 0.179 ± 0.019 mm). The implanted axes of the printed implant guide and designed guide were compared in terms of overall, lateral and angular error, which were 0.104 ± 0.004 mm, 0.097 ± 0.003 mm, and 2.053° ± 0.017°, respectively.
Originality/value
The results of this study demonstrated that the accuracy of a new chair-side tooth-supported fixed implant guide can satisfy clinical requirements.
</jats:sec
- …
