2,957,122 research outputs found
Topologically stable gapless phases of time-reversal invariant superconductors
We show that time-reversal invariant superconductors in d=2 (d=3) dimensions
can support topologically stable Fermi points (lines), characterized by an
integer topological charge. Combining this with the momentum space symmetries
present, we prove analogs of the fermion doubling theorem: for d=2 lattice
models admitting a spin X electron-hole structure, the number of Fermi points
is a multiple of four, while for d=3, Fermi lines come in pairs. We show two
implications of our findings for topological superconductors in d=3: first, we
relate the bulk topological invariant to a topological number for the surface
Fermi points in the form of an index theorem. Second, we show that the
existence of topologically stable Fermi lines results in extended gapless
regions in a generic topological superconductor phase diagram.Comment: 7 pages, 1 figure; v3: expanded versio
Black-hole horizon and metric singularity at the brane separating two sliding superfluids
An analog of black hole can be realized in the low-temperature laboratory.
The horizon can be constructed for the `relativistic' ripplons (surface waves)
living on the brane. The brane is represented by the interface between two
superfluid liquids, 3He-A and 3He-B, sliding along each other without friction.
Similar experimental arrangement has been recently used for the observation and
investigation of the Kelvin-Helmholtz type of instability in superfluids
(cond-mat/0111343). The shear-flow instability in superfluids is characterized
by two critical velocities. The lowest threshold measured in recent experiments
(cond-mat/0111343) corresponds to appearance of the ergoregion for ripplons. In
the modified geometry this will give rise to the black-hole event horizon in
the effective metric experienced by ripplons. In the region behind the horizon,
the brane vacuum is unstable due to interaction with the higher-dimensional
world of bulk superfluids. The time of the development of instability can be
made very long at low temperature. This will allow us to reach and investigate
the second critical velocity -- the proper Kelvin-Helmholtz instability
threshold. The latter corresponds to the singularity inside the black hole,
where the determinant of the effective metric becomes infinite.Comment: LaTeX file, 12 pages, 3 Figures, version accepted in JETP Letter
A new high temperature noble metal thermocouple pairing
Investigation has revealed reasonably oxidation resistant thermocouple pairing suitable for use in combustor gas streams at temperatures above 1873 K and at pressures above 20 atmospheres
Continuous turning slip ring assembly Patent
Development of slip ring assembly with inner and outer peripheral surfaces used as electrical contacts for brushe
- …
