31,302 research outputs found

    Use of mathematical derivatives (time-domain differentiation) on chromatographic data to enhance the detection and quantification of an unknown 'rider' peak

    Get PDF
    Two samples of an anticancer prodrug, AQ4N, were submitted for HPLC assay and showed an unidentified impurity that eluted as a 'rider' on the tail of the main peak. Mathematical derivatization of the chromatograms offered several advantages over conventional skimmed integration. A combination of the second derivative amplitude and simple linear regression gave a novel method for estimating the true peak area of the impurity peak. All the calculation steps were carried out using a widely available spreadsheet program. (C) 2003 Elsevier B.V. All rights reserved

    UHF flows and the flip automorphism

    Full text link
    A UHF flow is an infinite tensor product type action of the reals on a UHF algebra AA and the flip automorphism is an automorphism of AAA\otimes A sending xyx\otimes y into yxy\otimes x. If α\alpha is an inner perturbation of a UHF flow on AA, there is a sequence (un)(u_n) of unitaries in AAA\otimes A such that αtαt(un)un\alpha_t\otimes \alpha_t(u_n)-u_n converges to zero and the flip is the limit of \Ad u_n. We consider here whether the converse holds or not and solve it with an additional assumption: If AAAA\otimes A\cong A and α\alpha absorbs any UHF flow β\beta (i.e., αβ\alpha\otimes\beta is cocycle conjugate to α\alpha), then the converse holds; in this case α\alpha is what we call a universal UHF flow.Comment: 18 page

    Smile4life:The oral health of homeless people across Scotland

    Get PDF

    Parasitism of Early Instar Jack Pine Budworm (Lepidoptera: Tortricidae) by Apanteles Spp. (Hymenoptera: Braconidae) and Glypta Fumiferanae (Hymenoptera: Ichneumonidae)

    Get PDF
    Glypta fumiferanae and two species of Apanteles parasitized 1st-4th instar jack pine bud worm (Choristoneura pinus). Apparent parasitism of budworm in four Michigan populations ranged from 10.6 to 30.9% for A. fumiferanae, 4.3-16.4% for A. morrisi, and 2.1-9.1 % for G.fumiferanae. A. morrisi probably parasitized 3rd-4th instar jack pine bud worm. Based on the results obtained, it is suggested that sampling overwintering budworm larvae is appropriate for estimating apparent parasitism by A. fumiferanae and G. fumiferanae. Sampling budworm larvae at ca. 500 degree-days (base 8.9°C) is appropriate for estimating apparent parasitism by A. morrisi

    Amenable actions of discrete groups

    Get PDF
    A structure theorem is established for amenable actions of a countable discrete grou

    Search for associations containing young stars (SACY). V. Is multiplicity universal? Tight multiple systems

    Full text link
    Context: Dynamically undisrupted, young populations of stars are crucial to study the role of multiplicity in relation to star formation. Loose nearby associations provide us with a great sample of close (<<150 pc) Pre-Main Sequence (PMS) stars across the very important age range (\approx5-70 Myr) to conduct such research. Aims: We characterize the short period multiplicity fraction of the SACY (Search for Associations Containing Young stars) accounting for any identifiable bias in our techniques and present the role of multiplicity fractions of the SACY sample in the context of star formation. Methods: Using the cross-correlation technique we identified double-lined spectroscopic systems (SB2), in addition to this we computed Radial Velocity (RV) values for our subsample of SACY targets using several epochs of FEROS and UVES data. These values were used to revise the membership of each association then combined with archival data to determine significant RV variations across different data epochs characteristic of multiplicity; single-lined multiple systems (SB1). Results: We identified 7 new multiple systems (SB1s: 5, SB2s: 2). We find no significant difference between the short period multiplicity fraction (FmF_\mathrm{m}) of the SACY sample and that of nearby star forming regions (\approx1-2 Myr) and the field (FmF_\mathrm{m}\leq10%) both as a function of age and as a function of primary mass, M1M_1, in the ranges PP [1:200 day] and M2M_2 [0.08 MM_{\odot}-M1 M_1]. Conclusions: Our results are consistent with the picture of universal star formation, when compared to the field and nearby star forming regions (SFRs). We comment on the implications of the relationship between increasing multiplicity fraction with primary mass, within the close companion range, in relation to star formation.Comment: 14 pages, 18 figures, published, A&A http://dx.doi.org/10.1051/0004-6361/20142385

    On the age of the magnetically active WW Psa and TX Psa members of the beta Pictoris association

    Get PDF
    There are a variety of different techniques available to estimate the ages of pre-main-sequence stars. Components of physical pairs, thanks to their strict coevality and the mass difference, such as the binary system analysed in this paper, are best suited to test the effectiveness of these different techniques. We consider the system WW Psa + TX Psa whose membership of the 25-Myr beta Pictoris association has been well established by earlier works. We investigate which age dating technique provides the best agreement between the age of the system and that of the association. We have photometrically monitored WW Psa and TX Psa and measured their rotation periods as P = 2.37d and P = 1.086d, respectively. We have retrieved from the literature their Li equivalent widths and measured their effective temperatures and luminosities. We investigate whether the ages of these stars derived using three independent techniques are consistent with the age of the beta Pictoris association. We find that the rotation periods and the Li contents of both stars are consistent with the distribution of other bona fide members of the cluster. On the contrary, the isochronal fitting provides similar ages for both stars, but a factor of about four younger than the quoted age of the association, or about 30% younger when the effects of magnetic fields are included. We explore the origin of the discrepant age inferred from isochronal fitting, including the possibilities that either the two components may be unresolved binaries or that the basic stellar parameters of both components are altered by enhanced magnetic activity. The latter is found to be the more reasonable cause, suggesting that age estimates based on the Li content is more reliable than isochronal fitting for pre-main-sequence stars with pronounced magnetic activity.Comment: Accepted by Astronomy and Astrophysics on December 13, 2016. 13 pages and 11 figure
    corecore