416 research outputs found
Very-high energy gamma-ray astronomy: A 23-year success story in high-energy astroparticle physics
Very-high energy (VHE) gamma quanta contribute only a minuscule fraction -
below one per million - to the flux of cosmic rays. Nevertheless, being neutral
particles they are currently the best "messengers" of processes from the
relativistic/ultra-relativistic Universe because they can be extrapolated back
to their origin. The window of VHE gamma rays was opened only in 1989 by the
Whipple collaboration, reporting the observation of TeV gamma rays from the
Crab nebula. After a slow start, this new field of research is now rapidly
expanding with the discovery of more than 150 VHE gamma-ray emitting sources.
Progress is intimately related with the steady improvement of detectors and
rapidly increasing computing power. We give an overview of the early attempts
before and around 1989 and the progress after the pioneering work of the
Whipple collaboration. The main focus of this article is on the development of
experimental techniques for Earth-bound gamma-ray detectors; consequently, more
emphasis is given to those experiments that made an initial breakthrough rather
than to the successors which often had and have a similar (sometimes even
higher) scientific output as the pioneering experiments. The considered energy
threshold is about 30 GeV. At lower energies, observations can presently only
be performed with balloon or satellite-borne detectors. Irrespective of the
stormy experimental progress, the success story could not have been called a
success story without a broad scientific output. Therefore we conclude this
article with a summary of the scientific rationales and main results achieved
over the last two decades.Comment: 45 pages, 38 figures, review prepared for EPJ-H special issue "Cosmic
rays, gamma rays and neutrinos: A survey of 100 years of research
XMM-Newton evidence of shocked ISM in SN 1006: indications of hadronic acceleration
Shock fronts in young supernova remnants are the best candidates for being
sites of cosmic ray acceleration up to a few PeV, though conclusive
experimental evidence is still lacking. Hadron acceleration is expected to
increase the shock compression ratio, providing higher postshock densities, but
X-ray emission from shocked ambient medium has not firmly been detected yet in
remnants where particle acceleration is at work. We exploited the deep
observations of the XMM-Newton Large Program on SN 1006 to verify this
prediction. We performed spatially resolved spectral analysis of a set of
regions covering the southeastern rim of SN 1006. We studied the spatial
distribution of the thermodynamic properties of the ambient medium and
carefully verified the robustness of the result with respect to the analysis
method. We detected the contribution of the shocked ambient medium. We also
found that the postshock density of the interstellar medium significantly
increases in regions where particle acceleration is efficient. Under the
assumption of uniform preshock density, we found that the shock compression
ratio reaches a value of ~6 in regions near the nonthermal limbs. Our results
support the predictions of shock modification theory and indicate that effects
of acceleration of cosmic ray hadrons on the postshock plasma can be observed
in supernova remnants.Comment: Accepted for publication in A&
Dark Matter and Fundamental Physics with the Cherenkov Telescope Array
The Cherenkov Telescope Array (CTA) is a project for a next-generation
observatory for very high energy (GeV-TeV) ground-based gamma-ray astronomy,
currently in its design phase, and foreseen to be operative a few years from
now. Several tens of telescopes of 2-3 different sizes, distributed over a
large area, will allow for a sensitivity about a factor 10 better than current
instruments such as H.E.S.S, MAGIC and VERITAS, an energy coverage from a few
tens of GeV to several tens of TeV, and a field of view of up to 10 deg. In the
following study, we investigate the prospects for CTA to study several science
questions that influence our current knowledge of fundamental physics. Based on
conservative assumptions for the performance of the different CTA telescope
configurations, we employ a Monte Carlo based approach to evaluate the
prospects for detection. First, we discuss CTA prospects for cold dark matter
searches, following different observational strategies: in dwarf satellite
galaxies of the Milky Way, in the region close to the Galactic Centre, and in
clusters of galaxies. The possible search for spatial signatures, facilitated
by the larger field of view of CTA, is also discussed. Next we consider
searches for axion-like particles which, besides being possible candidates for
dark matter may also explain the unexpectedly low absorption by extragalactic
background light of gamma rays from very distant blazars. Simulated
light-curves of flaring sources are also used to determine the sensitivity to
violations of Lorentz Invariance by detection of the possible delay between the
arrival times of photons at different energies. Finally, we mention searches
for other exotic physics with CTA.Comment: (31 pages, Accepted for publication in Astroparticle Physics
Prospects for Observations of Pulsars and Pulsar Wind Nebulae with CTA
The last few years have seen a revolution in very-high gamma-ray astronomy
(VHE; E>100 GeV) driven largely by a new generation of Cherenkov telescopes
(namely the H.E.S.S. telescope array, the MAGIC and MAGIC-II large telescopes
and the VERITAS telescope array). The Cherenkov Telescope Array (CTA) project
foresees a factor of 5 to 10 improvement in sensitivity above 0.1 TeV,
extending the accessible energy range to higher energies up to 100 TeV, in the
Galactic cut-off regime, and down to a few tens GeV, covering the VHE photon
spectrum with good energy and angular resolution. As a result of the fast
development of the VHE field, the number of pulsar wind nebulae (PWNe) detected
has increased from one PWN in the early '90s to more than two dozen firm
candidates today. Also, the low energy threshold achieved and good sensitivity
at TeV energies has resulted in the detection of pulsed emission from the Crab
Pulsar (or its close environment) opening new and exiting expectations about
the pulsed spectra of the high energy pulsars powering PWNe. Here we discuss
the physics goals we aim to achieve with CTA on pulsar and PWNe physics
evaluating the response of the instrument for different configurations.Comment: accepted for publication in Astroparticle Physic
Searches for very high energy gamma rays from blazars with CANGAROO-III telescope in 2005-2009
We have searched for very high energy (VHE) gamma rays from four blazars
using the CANGAROO-III imaging atmospheric Cherenkov telescope. We report the
results of the observations of H 2356-309, PKS 2155-304, PKS 0537-441, and 3C
279, performed from 2005 to 2009, applying a new analysis to suppress the
effects of the position dependence of Cherenkov images in the field of view. No
significant VHE gamma ray emission was detected from any of the four blazars.
The GeV gamma-ray spectra of these objects were obtained by analyzing Fermi/LAT
archival data. Non-simultaneous wide range (radio to VHE gamma-ray bands)
spectral energy distributions (SEDs) including CANGAROO-III upper limits, GeV
gamma-ray spectra, and archival data are discussed using a one-zone synchrotron
self-Compton (SSC) model in combination with a external Compton (EC) radiation.
The HBLs (H 2356-309 and PKS 2155-304) can be explained by a simple SSC model,
and PKS 0537-441 and 3C 279 are well modeled by a combination of SSC and EC
model. We find a consistency with the blazar sequence in terms of strength of
magnetic field and component size.Comment: 11 pages, 8 figures, Accepted for publication in Astroparticle
Physic
Pulsar-wind nebulae and magnetar outflows: observations at radio, X-ray, and gamma-ray wavelengths
We review observations of several classes of neutron-star-powered outflows:
pulsar-wind nebulae (PWNe) inside shell supernova remnants (SNRs), PWNe
interacting directly with interstellar medium (ISM), and magnetar-powered
outflows. We describe radio, X-ray, and gamma-ray observations of PWNe,
focusing first on integrated spectral-energy distributions (SEDs) and global
spectral properties. High-resolution X-ray imaging of PWNe shows a bewildering
array of morphologies, with jets, trails, and other structures. Several of the
23 so far identified magnetars show evidence for continuous or sporadic
emission of material, sometimes associated with giant flares, and a few
possible "magnetar-wind nebulae" have been recently identified.Comment: 61 pages, 44 figures (reduced in quality for size reasons). Published
in Space Science Reviews, "Jets and Winds in Pulsar Wind Nebulae, Gamma-ray
Bursts and Blazars: Physics of Extreme Energy Release
Characterizing the gamma-ray long-term variability of PKS 2155-304 with H.E.S.S. and Fermi-LAT
Studying the temporal variability of BL Lac objects at the highest energies
provides unique insights into the extreme physical processes occurring in
relativistic jets and in the vicinity of super-massive black holes. To this
end, the long-term variability of the BL Lac object PKS 2155-304 is analyzed in
the high (HE, 100 MeV 200 GeV)
gamma-ray domain. Over the course of ~9 yr of H.E.S.S observations the VHE
light curve in the quiescent state is consistent with a log-normal behavior.
The VHE variability in this state is well described by flicker noise
(power-spectral-density index {\ss}_VHE = 1.10 +0.10 -0.13) on time scales
larger than one day. An analysis of 5.5 yr of HE Fermi LAT data gives
consistent results ({\ss}_HE = 1.20 +0.21 -0.23, on time scales larger than 10
days) compatible with the VHE findings. The HE and VHE power spectral densities
show a scale invariance across the probed time ranges. A direct linear
correlation between the VHE and HE fluxes could neither be excluded nor firmly
established. These long-term-variability properties are discussed and compared
to the red noise behavior ({\ss} ~ 2) seen on shorter time scales during
VHE-flaring states. The difference in power spectral noise behavior at VHE
energies during quiescent and flaring states provides evidence that these
states are influenced by different physical processes, while the compatibility
of the HE and VHE long-term results is suggestive of a common physical link as
it might be introduced by an underlying jet-disk connection.Comment: 11 pages, 16 figure
Detection of variable VHE gamma-ray emission from the extra-galactic gamma-ray binary LMC P3
Context. Recently, the high-energy (HE, 0.1-100 GeV) -ray emission
from the object LMC P3 in the Large Magellanic Cloud (LMC) has been discovered
to be modulated with a 10.3-day period, making it the first extra-galactic
-ray binary.
Aims. This work aims at the detection of very-high-energy (VHE, >100 GeV)
-ray emission and the search for modulation of the VHE signal with the
orbital period of the binary system.
Methods. LMC P3 has been observed with the High Energy Stereoscopic System
(H.E.S.S.); the acceptance-corrected exposure time is 100 h. The data set has
been folded with the known orbital period of the system in order to test for
variability of the emission. Energy spectra are obtained for the orbit-averaged
data set, and for the orbital phase bin around the VHE maximum.
Results. VHE -ray emission is detected with a statistical
significance of 6.4 . The data clearly show variability which is
phase-locked to the orbital period of the system. Periodicity cannot be deduced
from the H.E.S.S. data set alone. The orbit-averaged luminosity in the
TeV energy range is erg/s. A luminosity of erg/s is reached during 20% of the orbit. HE and VHE
-ray emissions are anti-correlated. LMC P3 is the most luminous
-ray binary known so far.Comment: 5 pages, 3 figures, 1 table, accepted for publication in A&
Discovery of very high energy γ-ray emission from the BL Lacertae object PKS 0301-243 with H.E.S.S.
The active galactic nucleus PKS 0301−243 (z = 0.266) is a high-synchrotron-peaked BL Lac object that is detected at high energies (HE, 100 MeV 100 GeV) by the High Energy Stereoscopic System (H.E.S.S.) from observations between September 2009 and December 2011 for a total live time of 34.9 h. Gamma rays above 200 GeV are detected at a significance of 9.4σ. A hint of variability at the 2.5σ level is found. An integral flux I(E > 200 GeV) = (3.3 ± 1.1stat ± 0.7syst) × 10-12 ph cm-2 s-1 and a photon index Γ = 4.6 ± 0.7stat ± 0.2syst are measured. Multi-wavelength light curves in HE, X-ray and optical bands show strong variability, and a minimal variability timescale of eight days is estimated from the optical light curve. A single-zone leptonic synchrotron self-Compton scenario satisfactorily reproduces the multi-wavelength data. In this model, the emitting region is out of equipartition and the jet is particle dominated. Because of its high redshift compared to other sources observed at TeV energies, the very high energy emission from PKS 0301−243 is attenuated by the extragalactic background light (EBL) and the measured spectrum is used to derive an upper limit on the opacity of the EBL.Fil: Abramowski, A.. Universitat Hamburg; AlemaniaFil: Acero, F.. Universite Montpellier II; FranciaFil: Aharonian, F.. Max Planck Institut für Kernphysik; AlemaniaFil: Benkhali, F. Ait. Max Planck Institut für Kernphysik; AlemaniaFil: Akhperjanian, A. G.. National Academy of Sciences of the Republic of Armenia; ArmeniaFil: Medina, Maria Clementina. Provincia de Buenos Aires. Gobernación. Comision de Investigaciones Científicas. Instituto Argentino de Radioastronomía. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto Argentino de Radioastronomia; ArgentinaFil: Valerius, K.. Universität Erlangen Nürnberg; AlemaniaFil: van Eldik, C.. Universität Erlangen Nürnberg; AlemaniaFil: Vasileiadis, G.. Universite Montpellier II; FranciaFil: Venter, C.. North West University; SudáfricaFil: Viana, A.. Max Planck Institut für Kernphysik; AlemaniaFil: Vincent, P.. Université Paris Diderot - Paris 7; FranciaFil: Völk, H. J.. Max Planck Institut für Kernphysik; AlemaniaFil: Volpe, F.. Max Planck Institut für Kernphysik; AlemaniaFil: Vorster, M.. North West University; SudáfricaFil: Wagner, S. J.. Universität Heidelberg; AlemaniaFil: Wagner, P.. Humboldt Universität zu Berlin; AlemaniaFil: Ward, M.. University Of Durham; Reino UnidoFil: Weidinger, M.. Ruhr-universität Bochum; AlemaniaFil: Weitzel, Q.. Max Planck Institut für Kernphysik; AlemaniaFil: White, R.. The University of Leicester; Reino UnidoFil: Wierzcholska, A.. Uniwersytet Jagiellonski; PoloniaFil: Willmann, P.. Universität Erlangen Nürnberg; AlemaniaFil: Wörnlein, A.. Universität Erlangen Nürnberg; AlemaniaFil: Wouters, D.. CEA Saclay; FranciaFil: Zacharias, M.. Ruhr-universität Bochum; AlemaniaFil: Zajczyk, A.. Universite Montpellier II; FranciaFil: Zdziarski, A. A.. Nicolaus Copernicus Astronomical Center; PoloniaFil: Zech, A.. Université Paris Diderot - Paris 7; FranciaFil: Zechlin, H. S.. Universitat Hamburg; Alemani
Detailed spectral and morphological analysis of the shell type SNR RCW 86
Aims: We aim for an understanding of the morphological and spectral
properties of the supernova remnant RCW~86 and for insights into the production
mechanism leading to the RCW~86 very high-energy gamma-ray emission. Methods:
We analyzed High Energy Spectroscopic System data that had increased
sensitivity compared to the observations presented in the RCW~86 H.E.S.S.
discovery publication. Studies of the morphological correlation between the
0.5-1~keV X-ray band, the 2-5~keV X-ray band, radio, and gamma-ray emissions
have been performed as well as broadband modeling of the spectral energy
distribution with two different emission models. Results:We present the first
conclusive evidence that the TeV gamma-ray emission region is shell-like based
on our morphological studies. The comparison with 2-5~keV X-ray data reveals a
correlation with the 0.4-50~TeV gamma-ray emission.The spectrum of RCW~86 is
best described by a power law with an exponential cutoff at TeV and a spectral index of ~. A static
leptonic one-zone model adequately describes the measured spectral energy
distribution of RCW~86, with the resultant total kinetic energy of the
electrons above 1 GeV being equivalent to 0.1\% of the initial kinetic
energy of a Type I a supernova explosion. When using a hadronic model, a
magnetic field of ~100G is needed to represent the measured data.
Although this is comparable to formerly published estimates, a standard
E spectrum for the proton distribution cannot describe the gamma-ray
data. Instead, a spectral index of ~1.7 would be required, which
implies that ~erg has been transferred into
high-energy protons with the effective density cm^-3. This
is about 10\% of the kinetic energy of a typical Type Ia supernova under the
assumption of a density of 1~cm^-3.Comment: accepted for publication by A&
- …
