1,336 research outputs found
Emergence of Periodic Structure from Maximizing the Lifetime of a Bound State Coupled to Radiation
Consider a system governed by the time-dependent Schr\"odinger equation in
its ground state. When subjected to weak (size ) parametric forcing
by an "ionizing field" (time-varying), the state decays with advancing time due
to coupling of the bound state to radiation modes. The decay-rate of this
metastable state is governed by {\it Fermi's Golden Rule}, , which
depends on the potential and the details of the forcing. We pose the
potential design problem: find which minimizes (maximizes
the lifetime of the state) over an admissible class of potentials with fixed
spatial support. We formulate this problem as a constrained optimization
problem and prove that an admissible optimal solution exists. Then, using
quasi-Newton methods, we compute locally optimal potentials. These have the
structure of a truncated periodic potential with a localized defect. In
contrast to optimal structures for other spectral optimization problems, our
optimizing potentials appear to be interior points of the constraint set and to
be smooth. The multi-scale structures that emerge incorporate the physical
mechanisms of energy confinement via material contrast and interference
effects.
An analysis of locally optimal potentials reveals local optimality is
attained via two mechanisms: (i) decreasing the density of states near a
resonant frequency in the continuum and (ii) tuning the oscillations of
extended states to make , an oscillatory integral, small. Our
approach achieves lifetimes, , for locally
optimal potentials with as compared with
for a typical potential. Finally, we
explore the performance of optimal potentials via simulations of the
time-evolution.Comment: 33 pages, 6 figure
Sharp spectral stability estimates via the Lebesgue measure of domains for higher order elliptic operators
We prove sharp stability estimates for the variation of the eigenvalues of
non-negative self-adjoint elliptic operators of arbitrary even order upon
variation of the open sets on which they are defined. These estimates are
expressed in terms of the Lebesgue measure of the symmetric difference of the
open sets. Both Dirichlet and Neumann boundary conditions are considered
Sobolev Inequalities for Differential Forms and -cohomology
We study the relation between Sobolev inequalities for differential forms on
a Riemannian manifold and the -cohomology of that manifold.
The -cohomology of is defined to be the quotient of the space
of closed differential forms in modulo the exact forms which are
exterior differentials of forms in .Comment: This paper has appeared in the Journal of Geometric Analysis, (only
minor changes have been made since verion 1
Conforming finite element methods for the clamped plate problem
Finite element methods for solving biharmonic boundary value problems are considered. The particular problem discussed is that of a clamped thin plate. This problem is reformulated in a weak, form in the Sobolev space Techniques for setting up conforming trial
Functions are utilized in a Galerkin technique to produce finite element solutions. The shortcomings of various trial function formulations are discussed, and a macro—element approach to local mesh refinement using rectangular elements is given
On the existence of initial data containing isolated black holes
We present a general construction of initial data for Einstein's equations
containing an arbitrary number of black holes, each of which is instantaneously
in equilibrium. Each black hole is taken to be a marginally trapped surface and
plays the role of the inner boundary of the Cauchy surface. The black hole is
taken to be instantaneously isolated if its outgoing null rays are shear-free.
Starting from the choice of a conformal metric and the freely specifiable part
of the extrinsic curvature in the bulk, we give a prescription for choosing the
shape of the inner boundaries and the boundary conditions that must be imposed
there. We show rigorously that with these choices, the resulting non-linear
elliptic system always admits solutions.Comment: 11 pages, 2 figures, RevTeX
On thin plate spline interpolation
We present a simple, PDE-based proof of the result [M. Johnson, 2001] that
the error estimates of [J. Duchon, 1978] for thin plate spline interpolation
can be improved by . We illustrate that -matrix
techniques can successfully be employed to solve very large thin plate spline
interpolation problem
Stability Of contact discontinuity for steady Euler System in infinite duct
In this paper, we prove structural stability of contact discontinuities for
full Euler system
Control theory for principled heap sizing
We propose a new, principled approach to adaptive heap sizing based on control theory. We review current state-of-the-art heap sizing mechanisms, as deployed in Jikes RVM and HotSpot. We then formulate heap sizing as a control problem, apply and tune a standard controller algorithm, and evaluate its performance on a set of well-known benchmarks. We find our controller adapts the heap size more responsively than existing mechanisms. This responsiveness allows tighter virtual machine memory footprints while preserving target application throughput, which is ideal for both embedded and utility computing domains. In short, we argue that formal, systematic approaches to memory management should be replacing ad-hoc heuristics as the discipline matures. Control-theoretic heap sizing is one such systematic approach
On the joint residence time of N independent two-dimensional Brownian motions
We study the behavior of several joint residence times of N independent
Brownian particles in a disc of radius in two dimensions. We consider: (i)
the time T_N(t) spent by all N particles simultaneously in the disc within the
time interval [0,t]; (ii) the time T_N^{(m)}(t) which at least m out of N
particles spend together in the disc within the time interval [0,t]; and (iii)
the time {\tilde T}_N^{(m)}(t) which exactly m out of N particles spend
together in the disc within the time interval [0,t]. We obtain very simple
exact expressions for the expectations of these three residence times in the
limit t\to\infty.Comment: 8 page
On the L_p-solvability of higher order parabolic and elliptic systems with BMO coefficients
We prove the solvability in Sobolev spaces for both divergence and
non-divergence form higher order parabolic and elliptic systems in the whole
space, on a half space, and on a bounded domain. The leading coefficients are
assumed to be merely measurable in the time variable and have small mean
oscillations with respect to the spatial variables in small balls or cylinders.
For the proof, we develop a set of new techniques to produce mean oscillation
estimates for systems on a half space.Comment: 44 pages, introduction revised, references expanded. To appear in
Arch. Rational Mech. Ana
- …
