1,082 research outputs found

    Ferromagnetic tunneling junctions at low voltages: elastic versus inelastic scattering at T=0KT=0 K

    Get PDF
    In this paper we analyze different contributions to the magnetoresistance of magnetic tunneling junctions at low voltages. A substantial fraction of the resistance drop with voltage can be ascribed to variations of the density of states and the barrier transmission with the bias. However, we found that the anomaly observed at zero bias and the magnetoresistance behavior at very small voltages, point to the contribution of inelastic magnon-assisted tunneling. The latter is described by a transfer parameter TJT^{J}, which is one or two orders of magnitude smaller than TdT^{d}, the direct transmission for elastic currents. Our theory is in excellent agreement with experimental data, yielding estimated values of TJT^{J} which are of the order of TdT^{d} / TJT^{J} ~ 40.Comment: 13 pages, 4 figures (in postscript format). PACS numbers: 72.25.-b, 73.23.-b, 72.10.D

    High-fidelity state detection and tomography of a single ion Zeeman qubit

    Full text link
    We demonstrate high-fidelity Zeeman qubit state detection in a single trapped 88 Sr+ ion. Qubit readout is performed by shelving one of the qubit states to a metastable level using a narrow linewidth diode laser at 674 nm followed by state-selective fluorescence detection. The average fidelity reached for the readout of the qubit state is 0.9989(1). We then measure the fidelity of state tomography, averaged over all possible single-qubit states, which is 0.9979(2). We also fully characterize the detection process using quantum process tomography. This readout fidelity is compatible with recent estimates of the detection error-threshold required for fault-tolerant computation, whereas high-fidelity state tomography opens the way for high-precision quantum process tomography

    Abundance gradients in the Milky Way for alpha elements, Iron peak elements, Barium, Lanthanum and Europium

    Full text link
    We model the abundance gradients in the disk of the Milky Way for several chemical elements (O, Mg, Si, S, Ca, Sc, Ti, Co, V, Fe, Ni, Zn, Cu, Mn, Cr, Ba, La and Eu), and compare our results with the most recent and homogeneous observational data. We adopt a chemical evolution model able to well reproduce the main properties of the solar vicinity. We compute, for the first time, the abundance gradients for all the above mentioned elements in the galactocentric distance range 4 - 22 kpc. The comparison with the observed data on Cepheids in the galactocentric distance range 5-17 kpc gives a very good agreement for many of the studied elements. In addition, we fit very well the data for the evolution of Lanthanum in the solar vicinity for which we present results here for the first time. We explore, also for the first time, the behaviour of the abundance gradients at large galactocentric distances by comparing our results with data relative to distant open clusters and red giants and select the best chemical evolution model model on the basis of that. We find a very good fit to the observed abundance gradients, as traced by Cepheids, for most of the elements, thus confirming the validity of the inside-out scenario for the formation of the Milky Way disk as well as the adopted nucleosynthesis prescriptions.Comment: 11 pages, 9 figures, accepted for publication in A&

    The nature of localization in graphene under quantum Hall conditions

    Full text link
    Particle localization is an essential ingredient in quantum Hall physics [1,2]. In conventional high mobility two-dimensional electron systems Coulomb interactions were shown to compete with disorder and to play a central role in particle localization [3]. Here we address the nature of localization in graphene where the carrier mobility, quantifying the disorder, is two to four orders of magnitude smaller [4,5,6,7,8,9,10]. We image the electronic density of states and the localized state spectrum of a graphene flake in the quantum Hall regime with a scanning single electron transistor [11]. Our microscopic approach provides direct insight into the nature of localization. Surprisingly, despite strong disorder, our findings indicate that localization in graphene is not dominated by single particle physics, but rather by a competition between the underlying disorder potential and the repulsive Coulomb interaction responsible for screening.Comment: 18 pages, including 5 figure

    Hyperpolarized Long-T1 Silicon Nanoparticles for Magnetic Resonance Imaging

    Get PDF
    Silicon nanoparticles are experimentally investigated as a potential hyperpolarized, targetable MRI imaging agent. Nuclear T_1 times at room temperature for a variety of Si nanoparticles are found to be remarkably long (10^2 to 10^4 s) - roughly consistent with predictions of a core-shell diffusion model - allowing them to be transported, administered and imaged on practical time scales without significant loss of polarization. We also report surface functionalization of Si nanoparticles, comparable to approaches used in other biologically targeted nanoparticle systems.Comment: supporting material here: http://marcuslab.harvard.edu/Aptekar_hyper1_sup.pd

    The color excess of quasars with intervening DLA systems- Analysis of the SDSS data release five

    Full text link
    We analyzed the spectroscopic and photometric database of the 5th data release of the Sloan Digital Sky Survey (SDSS) to search for evidence of the quasar reddening produced by dust embedded in intervening damped Ly alpha (DLA) systems. From a list of 5164 quasars in the interval of emission redshift 2.25 /= 4, we built up an "absorption sample" of 248 QSOs with a single DLA system in the interval of absorption redshift 2.2 < z_a </= 3.5 and a "pool" of 1959 control QSOs without DLA systems or strong metal systems. For each QSO of the absorption sample we extracted from the pool a subset of control QSOs that are closest in redshift and magnitude. The mean color of this subset was used as a zero point to measure the "deviation from the mean color" of individual DLA-QSOs, Delta_i. The colors were measured using "BEST" ugriz SDSS imaging data. The mean color excess of the absorption sample, , was estimated by averaging the individual color deviations Delta_i. We find = 27 +/- 9 x 10**(-3) mag and = 54 +/- 12 x 10**(-3) mag. These values are representative of the reddening of DLA systems at z_a ~ 2.7 in SDSS QSOs with limiting magnitude r =/~ 20.2. The detection of the mean reddening is confirmed by several statistical tests. Analysis of the results suggests an origin of the reddening in dust embedded in the DLA systems, with an SMC-type extinction curve. By converting the reddening into rest-frame extinction, we derive a mean dust-to-gas ratio ~ 2 to 4 x 10**(-23) mag cm^2. This value is ~ -1.25 dex lower than the mean dust-to-gas ratio of the Milky Way, in line with the lower level of metallicity in the present DLA sample.Comment: Accepted for publication on Astronomy & Astrophysics, 17 pages, 10 figure
    corecore