3,508 research outputs found

    Electron-electron interaction corrections to the thermal conductivity in disordered conductors

    Full text link
    We evaluate the electron-electron interaction corrections to the electronic thermal conductivity in a disordered conductor in the diffusive regime. We use a diagrammatic many-body method analogous to that of Altshuler and Aronov for the electrical conductivity. We derive results in one, two and three dimensions for both the singlet and triplet channels, and in all cases find that the Wiedemann-Franz law is violated.Comment: 8 pages, 2 figures Typos corrected in formulas (15) and (A.4) and Table 1; discussion of previous work in introduction extended; reference clarifying different definitions of parameter F adde

    Coulomb drag in quantum circuits

    Full text link
    We study drag effect in a system of two electrically isolated quantum point contacts (QPC), coupled by Coulomb interactions. Drag current exhibits maxima as a function of QPC gate voltages when the latter are tuned to the transitions between quantized conductance plateaus. In the linear regime this behavior is due to enhanced electron-hole asymmetry near an opening of a new conductance channel. In the non-linear regime the drag current is proportional to the shot noise of the driving circuit, suggesting that the Coulomb drag experiments may be a convenient way to measure the quantum shot noise. Remarkably, the transition to the non-linear regime may occur at driving voltages substantially smaller than the temperature.Comment: 6 pages, 2 figure

    Thermodynamics and Transport in Mesoscopic Disordered Networks

    Full text link
    We describe the effects of phase coherence on transport and thermodynamic properties of a disordered conducting network. In analogy with weak-localization correction, we calculate the phase coherence contribution to the magnetic response of mesoscopic metallic isolated networks. It is related to the return probability for a diffusive particle on the corresponding network. By solving the diffusion equation on various types of networks, including a ring with arms, an infinite square network or a chain of connected rings, we deduce the magnetic response. As it is the case for transport properties --weak-localization corrections or universal conductance fluctuations-- the magnetic response can be written in term of a single function S called spectral function which is related to the spatial average of the return probability on the network. We have found that the magnetization of an ensemble of CONNECTED rings is of the same order of magnitude as if the rings were disconnected.Comment: Proceedings of Minerva Workshop on Mesoscopics, Fractals and Neural Networks, Eilat, March 1997, 13 pages, RevTeX, 2 figure

    Interaction corrections: temperature and parallel field dependencies of the Lorentz number in two-dimensional disordered metals

    Full text link
    The electron-electron interaction corrections to the transport coefficients are calculated for a two-dimensional disordered metal in a parallel magnetic field via the quantum kinetic equation approach. For the thermal transport, three regimes (diffusive, quasiballistic and truly ballistic) can be identified as the temperature increases. For the diffusive and quasiballistic regimes, the Lorentz number dependence on the temperature and on the magnetic field is studied. The electron-electron interactions induce deviations from the Wiedemann-Franz law, whose sign depend on the temperature: at low temperatures the long-range part of the Coulomb interaction gives a positive correction, while at higher temperature the inelastic collisions dominate the negative correction. By applying a parallel field, the Lorentz number becomes a non-monotonic function of field and temperature for all values of the Fermi-liquid interaction parameter in the diffusive regime, while in the quasiballistic case this is true only sufficiently far from the Stoner instability.Comment: 11 pages, 5 figures. Appendix A revised, notes adde

    Magnetoconductivity of low-dimensional disordered conductors at the onset of the superconducting transition

    Full text link
    Magnetoconductivity of the disordered two- and three-dimensional superconductors is addressed at the onset of superconducting transition. In this regime transport is dominated by the fluctuation effects and we account for the interaction corrections coming from the Cooper channel. In contrast to many previous studies we consider strong magnetic fields and various temperature regimes, which allow to resolve the existing discrepancies with the experiments. Specifically, we find saturation of the fluctuations induced magneto-conductivity for both two- and three-dimensional superconductors at already moderate magnetic fields and discuss possible dimensional crossover at the immediate vicinity of the critical temperature. The surprising observation is that closer to the transition temperature weaker magnetic field provides the saturation. It is remarkable also that interaction correction to magnetoconductivity coming from the Cooper channel, and specifically the so called Maki-Thompson contribution, remains to be important even away from the critical region.Comment: 4 pages, 1 figur

    Critical level statistics and anomalously localized states at the Anderson transition

    Full text link
    We study the level-spacing distribution function P(s)P(s) at the Anderson transition by paying attention to anomalously localized states (ALS) which contribute to statistical properties at the critical point. It is found that the distribution P(s)P(s) for level pairs of ALS coincides with that for pairs of typical multifractal states. This implies that ALS do not affect the shape of the critical level-spacing distribution function. We also show that the insensitivity of P(s)P(s) to ALS is a consequence of multifractality in tail structures of ALS.Comment: 8 pages, 5 figure

    Mesoscopic Resistance Fluctuations in Cobalt Nanoparticles

    Full text link
    We present measurements of mesoscopic resistance fluctuations in cobalt nanoparticles and study how the fluctuations with bias voltage, bias fingerprints, respond to magnetization reversal processes. Bias fingerprints rearrange when domains are nucleated or annihilated. The domain-wall causes an electron wavefunction phase-shift of 5π\approx 5\pi. The phase-shift is not caused by the Aharonov-Bohm effect; we explain how it arises from the mistracking effect, where electron spins lag in orientation with respect to the moments inside the domain-wall. Dephasing time in Co at 0.03K0.03K is short, τϕps\tau_\phi\sim ps, which we attribute to the strong magnetocrystalline anisotropy.Comment: 5 pages 3 figs colou

    Nonequilibrium electrons in tunnel structures under high-voltage injection

    Full text link
    We investigate electronic distributions in nonequilibrium tunnel junctions subject to a high voltage bias VV under competing electron-electron and electron-phonon relaxation processes. We derive conditions for reaching quasi-equilibrium and show that, though the distribution can still be thermal for low energies where the rate of the electron-electron relaxation exceeds significantly the electron-phonon relaxation rate, it develops a power-law tail at energies of order of eVeV. In a general case of comparable electron-electron and electron-phonon relaxation rates, this tail leads to emission of high-energy phonons which carry away most of the energy pumped in by the injected current.Comment: Revised versio
    corecore