469 research outputs found
Genomic signatures of population decline in the malaria mosquito Anopheles gambiae
Population genomic features such as nucleotide diversity and linkage disequilibrium are expected to be strongly shaped by changes in population size, and might therefore be useful for monitoring the success of a control campaign. In the Kilifi district of Kenya, there has been a marked decline in the abundance of the malaria vector Anopheles gambiae subsequent to the rollout of insecticide-treated bed nets. To investigate whether this decline left a detectable population genomic signature, simulations were performed to compare the effect of population crashes on nucleotide diversity, Tajima's D, and linkage disequilibrium (as measured by the population recombination parameter ρ). Linkage disequilibrium and ρ were estimated for An. gambiae from Kilifi, and compared them to values for Anopheles arabiensis and Anopheles merus at the same location, and for An. gambiae in a location 200 km from Kilifi. In the first simulations ρ changed more rapidly after a population crash than the other statistics, and therefore is a more sensitive indicator of recent population decline. In the empirical data, linkage disequilibrium extends 100-1000 times further, and ρ is 100-1000 times smaller, for the Kilifi population of An. gambiae than for any of the other populations. There were also significant runs of homozygosity in many of the individual An. gambiae mosquitoes from Kilifi. These results support the hypothesis that the recent decline in An. gambiae was driven by the rollout of bed nets. Measuring population genomic parameters in a small sample of individuals before, during and after vector or pest control may be a valuable method of tracking the effectiveness of interventions
Evidence for Pervasive Adaptive Protein Evolution in Wild Mice
The relative contributions of neutral and adaptive substitutions to molecular evolution has been one of the most controversial issues in evolutionary biology for more than 40 years. The analysis of within-species nucleotide polymorphism and between-species divergence data supports a widespread role for adaptive protein evolution in certain taxa. For example, estimates of the proportion of adaptive amino acid substitutions (alpha) are 50% or more in enteric bacteria and Drosophila. In contrast, recent estimates of alpha for hominids have been at most 13%. Here, we estimate alpha for protein sequences of murid rodents based on nucleotide polymorphism data from multiple genes in a population of the house mouse subspecies Mus musculus castaneus, which inhabits the ancestral range of the Mus species complex and nucleotide divergence between M. m. castaneus and M. famulus or the rat. We estimate that 57% of amino acid substitutions in murids have been driven by positive selection. Hominids, therefore, are exceptional in having low apparent levels of adaptive protein evolution. The high frequency of adaptive amino acid substitutions in wild mice is consistent with their large effective population size, leading to effective natural selection at the molecular level. Effective natural selection also manifests itself as a paucity of effectively neutral nonsynonymous mutations in M. m. castaneus compared to humans
Population genomics of sub-Saharan Drosophila melanogaster: African diversity and non-African admixture
(ABRIDGED) We report the genome sequencing of 139 wild-derived strains of D.
melanogaster, representing 22 population samples from the sub-Saharan ancestral
range of this species, along with one European population. Most genomes were
sequenced above 25X depth from haploid embryos. Results indicated a pervasive
influence of non-African admixture in many African populations, motivating the
development and application of a novel admixture detection method. Admixture
proportions varied among populations, with greater admixture in urban
locations. Admixture levels also varied across the genome, with localized peaks
and valleys suggestive of a non-neutral introgression process. Genomes from the
same location differed starkly in ancestry, suggesting that isolation
mechanisms may exist within African populations. After removing putatively
admixed genomic segments, the greatest genetic diversity was observed in
southern Africa (e.g. Zambia), while diversity in other populations was largely
consistent with a geographic expansion from this potentially ancestral region.
The European population showed different levels of diversity reduction on each
chromosome arm, and some African populations displayed chromosome arm-specific
diversity reductions. Inversions in the European sample were associated with
strong elevations in diversity across chromosome arms. Genomic scans were
conducted to identify loci that may represent targets of positive selection. A
disproportionate number of candidate selective sweep regions were located near
genes with varied roles in gene regulation. Outliers for Europe-Africa FST were
found to be enriched in genomic regions of locally elevated cosmopolitan
admixture, possibly reflecting a role for some of these loci in driving the
introgression of non-African alleles into African populations
Genome-wide fine-scale recombination rate variation in Drosophila melanogaster
Estimating fine-scale recombination maps of Drosophila from population genomic data is a challenging problem, in particular because of the high background recombination rate. In this paper, a new computational method is developed to address this challenge. Through an extensive simulation study, it is demonstrated that the method allows more accurate inference, and exhibits greater robustness to the effects of natural selection and noise, compared to a well-used previous method developed for studying fine-scale recombination rate variation in the human genome. As an application, a genome-wide analysis of genetic variation data is performed for two Drosophila melanogaster populations, one from North America (Raleigh, USA) and the other from Africa (Gikongoro, Rwanda). It is shown that fine-scale recombination rate variation is widespread throughout the D. melanogaster genome, across all chromosomes and in both populations. At the fine-scale, a conservative, systematic search for evidence of recombination hotspots suggests the existence of a handful of putative hotspots each with at least a tenfold increase in intensity over the background rate. A wavelet analysis is carried out to compare the estimated recombination maps in the two populations and to quantify the extent to which recombination rates are conserved. In general, similarity is observed at very broad scales, but substantial differences are seen at fine scales. The average recombination rate of the X chromosome appears to be higher than that of the autosomes in both populations, and this pattern is much more pronounced in the African population than the North American population. The correlation between various genomic features—including recombination rates, diversity, divergence, GC content, gene content, and sequence quality—is examined using the wavelet analysis, and it is shown that the most notable difference between D. melanogaster and humans is in the correlation between recombination and diversity
Osvaldo and Isis retrotransposons as markers of the Drosophila buzzatii colonization in Australia
Background: Transposable elements (TEs) constitute an important source of genetic variability owing to their jumping and regulatory properties, and are considered to drive species evolution. Several factors that are able to induce TE transposition in genomes have been documented (for example environmental stress and inter- and intra-specific crosses) but in many instances the reasons for TE mobilisation have yet to be elucidated. Colonising populations constitute an ideal model for studying TE behaviour and distribution as they are exposed to different environmental and new demographic conditions. In this study, the distribution of two TEs, Osvaldo and Isis, was examined in two colonising populations of D. buzzatii from Australia. Comparing Osvaldo copy numbers between Australian and Old World (reported in previous studies) colonisations provides a valuable tool for elucidating the colonisation process and the effect of new conditions encountered by colonisers on TEs. Results: The chromosomal distributions of Osvaldo and Isis retrotransposons in two colonising populations of D. buzzatii from Australia revealed sites of high insertion frequency (>10%) and low frequency sites. Comparisons between Osvaldo insertion profiles in colonising populations from the Old World and Australia demonstrate a tendency towards a higher number of highly occupied sites with higher insertion frequency in the Old World than in Australian populations. Tests concerning selection against deleterious TE insertions indicate that Isis is more controlled by purifying selection than Osvaldo. The distribution of both elements on chromosomal arms follows a Poisson distribution and there are non-significant positive correlations between highly occupied sites and chromosomal inversions. Conclusions: The occupancy profile of Osvaldo and Isis retrotransposons is characterised by the existence of high and low insertion frequency sites in the populations. These results demonstrate that Australian D. buzzatii populations were subjected to a founder effect during the colonisation process. Moreover, there are more sites with high insertion frequency in the Old World colonisation than in the Australian colonisation, indicating a probable stronger bottleneck effect in Australia. The results suggest that selection does not seem to play a major role, compared to demography, in the distribution of transposable elements in the Australian populations
An Approximate Bayesian Estimator Suggests Strong, Recurrent Selective Sweeps in Drosophila
The recurrent fixation of newly arising, beneficial mutations in a species reduces levels of linked neutral variability. Models positing frequent weakly beneficial substitutions or, alternatively, rare, strongly selected substitutions predict similar average effects on linked neutral variability, if the product of the rate and strength of selection is held constant. We propose an approximate Bayesian (ABC) polymorphism-based estimator that can be used to distinguish between these models, and apply it to multi-locus data from Drosophila melanogaster. We investigate the extent to which inference about the strength of selection is sensitive to assumptions about the underlying distributions of the rates of substitution and recombination, the strength of selection, heterogeneity in mutation rate, as well as the population's demographic history. We show that assuming fixed values of selection parameters in estimation leads to overestimates of the strength of selection and underestimates of the rate. We estimate parameters for an African population of D. melanogaster (ŝ∼2E−03, ) and compare these to previous estimates. Finally, we show that surveying larger genomic regions is expected to lend much more discriminatory power to the approach. It will thus be of great interest to apply this method to emerging whole-genome polymorphism data sets in many taxa
An international multidisciplinary consensus statement on fasting before procedural sedation in adults and children
The multidisciplinary International Committee for the Advancement of Procedural Sedation presents the first fasting and aspiration prevention recommendations specific to procedural sedation, based on an extensive review of the literature. These were developed using Delphi methodology and assessment of the robustness of the available evidence. The literature evidence is clear that fasting, as currently practiced, often substantially exceeds recommended time thresholds and has known adverse consequences, for example, irritability, dehydration and hypoglycaemia. Fasting does not guarantee an empty stomach, and there is no observed association between aspiration and compliance with common fasting guidelines. The probability of clinically important aspiration during procedural sedation is negligible. In the post-1984 literature there are no published reports of aspiration-associated mortality in children, no reports of death in healthy adults (ASA physical status 1 or 2) and just nine reported deaths in adults of ASA physical status 3 or above. Current concerns about aspiration are out of proportion to the actual risk. Given the lower observed frequency of aspiration and mortality than during general anaesthesia, and the theoretical basis for assuming a lesser risk, fasting strategies in procedural sedation can reasonably be less restrictive. We present a consensus-derived algorithm in which each patient is first risk-stratified during their pre-sedation assessment, using evidence-based factors relating to patient characteristics, comorbidities, the nature of the procedure and the nature of the anticipated sedation technique. Graded fasting precautions for liquids and solids are then recommended for elective procedures based upon this categorisation of negligible, mild or moderate aspiration risk. This consensus statement can serve as a resource to practitioners and policymakers who perform and oversee procedural sedation in patients of all ages, worldwide
Recommended from our members
High-resolution mapping reveals hundreds of genetic incompatibilities in hybridizing fish species
Hybridization is increasingly being recognized as a common process in both animal
and plant species. Negative epistatic interactions between genes from different parental genomes
decrease the fitness of hybrids and can limit gene flow between species. However, little is known
about the number and genome-wide distribution of genetic incompatibilities separating species.
To detect interacting genes, we perform a high-resolution genome scan for linkage disequilibrium
between unlinked genomic regions in naturally occurring hybrid populations of swordtail fish. We
estimate that hundreds of pairs of genomic regions contribute to reproductive isolation between
these species, despite them being recently diverged. Many of these incompatibilities are likely the
result of natural or sexual selection on hybrids, since intrinsic isolation is known to be weak. Patterns
of genomic divergence at these regions imply that genetic incompatibilities play a significant role in
limiting gene flow even in young species
Pervasive Adaptive Protein Evolution Apparent in Diversity Patterns around Amino Acid Substitutions in Drosophila simulans
In Drosophila, multiple lines of evidence converge in suggesting that beneficial substitutions to the genome may be common. All suffer from confounding factors, however, such that the interpretation of the evidence—in particular, conclusions about the rate and strength of beneficial substitutions—remains tentative. Here, we use genome-wide polymorphism data in D. simulans and sequenced genomes of its close relatives to construct a readily interpretable characterization of the effects of positive selection: the shape of average neutral diversity around amino acid substitutions. As expected under recurrent selective sweeps, we find a trough in diversity levels around amino acid but not around synonymous substitutions, a distinctive pattern that is not expected under alternative models. This characterization is richer than previous approaches, which relied on limited summaries of the data (e.g., the slope of a scatter plot), and relates to underlying selection parameters in a straightforward way, allowing us to make more reliable inferences about the prevalence and strength of adaptation. Specifically, we develop a coalescent-based model for the shape of the entire curve and use it to infer adaptive parameters by maximum likelihood. Our inference suggests that ∼13% of amino acid substitutions cause selective sweeps. Interestingly, it reveals two classes of beneficial fixations: a minority (approximately 3%) that appears to have had large selective effects and accounts for most of the reduction in diversity, and the remaining 10%, which seem to have had very weak selective effects. These estimates therefore help to reconcile the apparent conflict among previously published estimates of the strength of selection. More generally, our findings provide unequivocal evidence for strongly beneficial substitutions in Drosophila and illustrate how the rapidly accumulating genome-wide data can be leveraged to address enduring questions about the genetic basis of adaptation
How and Why Chromosome Inversions Evolve
Chromosome inversions are a major engine of genome evolution. New genomic and ecological data are beginning to reveal the evolutionary forces that drive the evolution of inversions
- …
