77 research outputs found
Design of a sub-13-fs, multi-gigawatt chirped pulse optical parametric amplification system
We present a design for phase-locked chirped pulse optical parametric amplification of ultra-short pulses based on Ti:sapphire. A realistic description is given by measuring the oscillator pulse (11.6fs, 4nJ) with SPIDER and numerically propagating it through the whole chirped pulse amplification system. The interaction is modeled with a full three-dimensional code and compression is ray-trace optimized to yield 12.7-fs, 98-μJ pulses with 1mJ of pump energy. The design is scalable in energy (e.g. 1mJ with 10-mJ pump) and is exclusively based on commercially available component
Room temperature femtosecond optical parametric generation in MgO-doped stoichiometric LiTaO3
We demonstrate room temperature femtosecond optical parametric generation with high average output power in periodically poled MgO-doped stoichiometric LiTaO3. Direct pumping with 725-fs pulses from a passively mode-locked thin disk laser at 1030nm resulted in stable 1.5W average signal power at 1484nm at the full laser repetition rate of 59MHz. With this demonstration we achieved a significant simplification of our recently presented red-green-blue laser source because no temperature stabilization of any nonlinear crystal is require
Noise reduction in 3D noncollinear parametric amplifier
We analytically find an approximate Bloch-Messiah reduction of a noncollinear
parametric amplifier pumped with a focused monochromatic beam. We consider type
I phase matching. The results are obtained using a perturbative expansion and
scaled to a high gain regime. They allow a straightforward maximization of the
signal gain and minimization of the parametric fluorescence noise. We find the
fundamental mode of the amplifier, which is an elliptic Gaussian defining the
optimal seed beam shape. We conclude that the output of the amplifier should be
stripped of higher order modes, which are approximately Hermite-Gaussian beams.
Alternatively, the pump waist can be adjusted such that the amount of noise
produced in the higher order modes is minimized.Comment: 18 pages, 9 figures, accepted to Applied Physics
Generation of 1.5-octave intense infrared pulses by nonlinear interactions in DAST crystal
Infrared pulses with large spectral width extending from 1.2 to 3.4 μ m are generated in the organic crystal DAST (4-N, N-dimethylamino-4′-N′-methylstilbazolium tosylate). The input pulse has a central wavelength of 1.5 μ m and 65 fs duration. With 2.8 mJ input energy we obtained up to 700 μ J in the broadened spectrum. The output can be easily scaled up in energy by increasing the crystal size together with the energy and the beam size of the pump. The ultra-broad spectrum is ascribed to cascaded second order processes mediated by the exceptionally large effective χ 2 nonlinearity of DAST, but the shape of the spectrum indicates that a delayed χ 3 process may also be involved. Numerical simulations reproduce the experimental results qualitatively and provide an insight in the mechanisms underlying the asymmetric spectral broadening
Numerical simulations for performance optimization of a few-cycle terawatt NOPCPA system
We present a systematic numerical design and performance study of an ultra-broadband noncollinear optical parametric chirped pulse amplification (NOPCPA) system. Using a split-step Fourier approach, we model a three-stage amplifier system which is designed for the generation of 7 fs pulses with multi-terawatt peak intensity. The numerical results are compared with recent experimental data. Several important aspects and design parameters specific to NOPCPA are identified, and the values of these parameters required to achieve optimal working conditions are investigated. We identify and analyze wavelength-dependent gain saturation effects, which are specific to NOPCPA and have a strong influence on the parametric amplification process. © Springer-Verlag 2007
Generation of 1.5-octave intense infrared pulses by nonlinear interactions in DAST crystal
Infrared pulses with large spectral width extending from 1.2 to 3.4 μm are generated in the organic crystal DAST (4-N, N-dimethylamino-4′-N′-methylstilbazolium tosylate). The input pulse has a central wavelength of 1.5 μm and 65 fs duration. With 2.8 mJ input energy we obtained up to 700 μJ in the broadened spectrum. The output can be easily scaled up in energy by increasing the crystal size together with the energy and the beam size of the pump. The ultrabroad spectrum is ascribed to cascaded second order processes mediated by the exceptionally large effective χ2 nonlinearity of DAST, but the shape of the spectrum indicates that a delayed χ3 process may also be involved. Numerical simulations reproduce the experimental results qualitatively and provide an insight in the mechanisms underlying the asymmetric spectral broadening
Recommended from our members
Beam Tilt and Angular Dispersion in Broad-Bandwidth, Nanosecond Optical Parametric Oscillators
We show that the signal and idler beams generated by certain types of unseeded, nanosecond optical parametric oscillators are tilted and angularly dispersed and have anomalously large bandwidths. This effect is demonstrated in both laboratory measurements and a numerical model. We show how the optical cavity design influences the tilts and how they can be eliminated or minimized. We also determine the conditions necessary to injection seed these parametric oscillators
Comparing Static and Dynamic Weighted Software Coupling Metrics
Coupling metrics that count the number of inter-module connections in a software system
are an established way to measure internal software quality with respect to modularity. In addition to
static metrics, which are obtained from the source or compiled code of a program, dynamic metrics
use runtime data gathered, e.g., by monitoring a system in production. Dynamic metrics have been
used to improve the accuracy of static metrics for object-oriented software. We study weighted
dynamic coupling that takes into account how often a connection (e.g., a method call) is executed
during a system’s run. We investigate the correlation between dynamic weighted metrics and their
static counterparts. To compare the different metrics, we use data collected from four different
experiments, each monitoring production use of a commercial software system over a period of four
weeks. We observe an unexpected level of correlation between the static and the weighted dynamic
case as well as revealing differences between class- and package-level analyses
Multi-watt, multi-octave, mid-infrared femtosecond source
Spectroscopy in the wavelength range from 2 to 11 mu m (900 to 5000 cm(-1)) implies a multitude of applications in fundamental physics, chemistry, as well as environmental and life sciences. The related vibrational transitions, which all infrared-active small molecules, the most common functional groups, as well as biomolecules like proteins, lipids, nucleic acids, and carbohydrates exhibit, reveal information about molecular structure and composition. However, light sources and detectors in the mid-infrared have been inferior to those in the visible or near-infrared, in terms of power, bandwidth, and sensitivity, severely limiting the performance of infrared experimental techniques. This article demonstrates the generation of femtosecond radiation with up to 5 W at 4.1 mu m and 1.3 W at 8.5 mu m, corresponding to an order-of-magnitude average power increase for ultrafast light sources operating at wavelengths longer than 5 mu m. The presented concept is based on power-scalable near-infrared lasers emitting at a wavelength near 1 mu m, which pump optical parametric amplifiers. In addition, both wavelength tunability and supercontinuum generation are reported, resulting in spectral coverage from 1.6 to 10.2 mu m with power densities exceeding state-of-the-art synchrotron sources over the entire range. The flexible frequency conversion scheme is highly attractive for both up-conversion and frequency comb spectroscopy, as well as for a variety of time-domain applications
- …
