396 research outputs found
Fast automated scanning of OPERA emulsion films
The use of nuclear emulsions to record tracks of charged particles with an
accuracy of better than 1 micron is possible in large physics experiments
thanks to the recent improvements in the industrial production of emulsions and
to the development of fast automated microscopes.
The European Scanning System (ESS) is a fast automatic system developed for
the mass scanning of the emulsions of the OPERA experiment, which requires
microscopes with scanning speeds of about 20 cm/h. Recent improvements in
the technique and measurements with ESS are reported.Comment: 3 pages, 5 figures, presented at the 10th Topical Seminar on
Innovative Particle and Radiation Detectors, 1-5 October 2006, Siena, Ital
Second large-scale Monte Carlo study for the Cherenkov Telescope Array
The Cherenkov Telescope Array (CTA) represents the next generation of ground
based instruments for Very High Energy gamma-ray astronomy. It is expected to
improve on the sensitivity of current instruments by an order of magnitude and
provide energy coverage from 20 GeV to more than 200 TeV. In order to achieve
these ambitious goals Monte Carlo (MC) simulations play a crucial role, guiding
the design of CTA. Here, results of the second large-scale MC production are
reported, providing a realistic estimation of feasible array candidates for
both Northern and Sourthern Hemisphere sites performance, placing CTA
capabilities into the context of the current generation of High Energy
-ray detectors.Comment: In Proceedings of the 34th International Cosmic Ray Conference
(ICRC2015), The Hague, The Netherlands. All CTA contributions at
arXiv:1508.0589
Monte Carlo Performance Studies of Candidate Sites for the Cherenkov Telescope Array
The Cherenkov Telescope Array (CTA) is the next-generation gamma-ray
observatory with sensitivity in the energy range from 20 GeV to beyond 300 TeV.
CTA is proposed to consist of two arrays of 40-100 imaging atmospheric
Cherenkov telescopes, with one site located in each of the Northern and
Southern Hemispheres. The evaluation process for the candidate sites for CTA is
supported by detailed Monte Carlo simulations, which take different attributes
like site altitude and geomagnetic field configuration into account. In this
contribution we present the comparison of the sensitivity and performance of
the different CTA site candidates for the measurement of very-high energy gamma
rays.Comment: In Proceedings of the 34th International Cosmic Ray Conference
(ICRC2015), The Hague, The Netherlands. All CTA contributions at
arXiv:1508.0589
Search for spontaneous muon emission from lead nuclei
We describe a possible search for muonic radioactivity from lead nuclei using
the base elements ("bricks" composed by lead and nuclear emulsion sheets) of
the long-baseline OPERA neutrino experiment. We present the results of a Monte
Carlo simulation concerning the expected event topologies and estimates of the
background events. Using few bricks, we could reach a good sensitivity level.Comment: 12 pages, 4 figure
Monte Carlo Performance Studies for the Site Selection of the Cherenkov Telescope Array
The Cherenkov Telescope Array (CTA) represents the next generation of
ground-based instruments for very-high-energy (VHE) gamma-ray astronomy, aimed
at improving on the sensitivity of current-generation experiments by an order
of magnitude and providing coverage over four decades of energy. The current
CTA design consists of two arrays of tens of imaging atmospheric Cherenkov
telescopes, comprising Small, Medium and Large-Sized Telescopes, with one array
located in each of the Northern and Southern Hemispheres. To study the effect
of the site choice on the overall \gls{cta} performance and support the site
evaluation process, detailed Monte Carlo simulations have been performed. These
results show the impact of different site-related attributes such as altitude,
night-sky background and local geomagnetic field on CTA performance for the
observation of VHE gamma rays.Comment: 34 pages, 11 figures, Accepted for publication in AP
Cherenkov Telescope Array Data Management
Very High Energy gamma-ray astronomy with the Cherenkov Telescope Array (CTA)
is evolving towards the model of a public observatory. Handling, processing and
archiving the large amount of data generated by the CTA instruments and
delivering scientific products are some of the challenges in designing the CTA
Data Management. The participation of scientists from within CTA Consortium and
from the greater worldwide scientific community necessitates a sophisticated
scientific analysis system capable of providing unified and efficient user
access to data, software and computing resources. Data Management is designed
to respond to three main issues: (i) the treatment and flow of data from remote
telescopes; (ii) "big-data" archiving and processing; (iii) and open data
access. In this communication the overall technical design of the CTA Data
Management, current major developments and prototypes are presented.Comment: 8 pages, 2 figures, In Proceedings of the 34th International Cosmic
Ray Conference (ICRC2015), The Hague, The Netherlands. All CTA contributions
at arXiv:1508.0589
Electron/pion separation with an Emulsion Cloud Chamber by using a Neural Network
We have studied the performance of a new algorithm for electron/pion
separation in an Emulsion Cloud Chamber (ECC) made of lead and nuclear emulsion
films. The software for separation consists of two parts: a shower
reconstruction algorithm and a Neural Network that assigns to each
reconstructed shower the probability to be an electron or a pion. The
performance has been studied for the ECC of the OPERA experiment [1].
The separation algorithm has been optimized by using a detailed Monte
Carlo simulation of the ECC and tested on real data taken at CERN (pion beams)
and at DESY (electron beams). The algorithm allows to achieve a 90% electron
identification efficiency with a pion misidentification smaller than 1% for
energies higher than 2 GeV
Layered double hydroxides in bioinspired nanotechnology
Layered Double Hydroxides (LDHs) are a relevant class of inorganic lamellar nanomaterials that have attracted significant interest in life science-related applications, due to their highly controllable synthesis and high biocompatibility. Under a general point of view, this class of materials might have played an important role for the origin of life on planet Earth, given their ability to adsorb and concentrate life-relevant molecules in sea environments. It has been speculated that the organic-mineral interactions could have permitted to organize the adsorbed molecules, leading to an increase in their local concentration and finally to the emergence of life. Inspired by nature, material scientists, engineers and chemists have started to leverage the ability of LDHs to absorb and concentrate molecules and biomolecules within life-like compartments, allowing to realize highly-efficient bioinspired platforms, usable for bioanalysis, therapeutics, sensors and bioremediation. This review aims at summarizing the latest evolution of LDHs in this research field under an unprecedented perspective, finally providing possible challenges and directions for future research
- …
