2,000 research outputs found
Nonmarket Valuations of Accidental Oil Spills: A Survey of Economic and Legal Principles
This paper presents an overview of legal and economic theories used to assess liability and damages for loss of nonmarket goods arising from an accidental oil spill. Several different economic methods used for quantifying values are discussed and critiqued. Also reviewed are the fundamental legal doctrines that permit individuals and public agencies to seek compensation for these damages. To illustrate the applicability of these economic and legal theories, two case studies arc presented and evaluated in terms of the principles presented earlier.Environmental Economics and Policy, International Relations/Trade, Research Methods/ Statistical Methods, Resource /Energy Economics and Policy, Risk and Uncertainty,
Dirac parameters and topological phase diagram of Pb1-xSnxSe from magneto-spectroscopy
Pb1-xSnxSe hosts 3D massive Dirac fermions across the entire composition
range for which the crystal structure is cubic. In this work, we present a
comprehensive experimental mapping of the 3D band structure parameters of
Pb1-xSnxSe as a function of composition and temperature. We cover a parameter
space spanning the band inversion that yields its topological crystalline
insulator phase. A non-closure of the energy gap is evidenced in the vicinity
of this phase transition. Using magnetooptical Landau level spectroscopy, we
determine the energy gap, Dirac velocity, anisotropy factor and topological
character of Pb1-xSnxSe epilayers grown by molecular beam epitaxy on BaF2
(111). Our results are evidence that Pb1-xSnxSe is a model system to study
topological phases and the nature of the phase transition.Comment: Submitte
Antiferromagnetic phase of the gapless semiconductor V3Al
Discovering new antiferromagnetic compounds is at the forefront of developing
future spintronic devices without fringing magnetic fields. The
antiferromagnetic gapless semiconducting D03 phase of V3Al was successfully
synthesized via arc-melting and annealing. The antiferromagnetic properties
were established through synchrotron measurements of the atom-specific magnetic
moments, where the magnetic dichroism reveals large and oppositely-oriented
moments on individual V atoms. Density functional theory calculations confirmed
the stability of a type G antiferromagnetism involving only two-third of the V
atoms, while the remaining V atoms are nonmagnetic. Magnetization, x-ray
diffraction and transport measurements also support the antiferromagnetism.
This archetypal gapless semiconductor may be considered as a cornerstone for
future spintronic devices containing antiferromagnetic elements.Comment: Accepted to Physics Review B on 02/23/1
A note on Gauge Theories Coupled to Gravity
We analyze the bound on gauge couplings , suggested by
Arkani-Hamed et.al. We show this bound can be derived from simple
semi-classical considerations and holds in spacetime dimensions greater than or
equal to four. Non abelian gauge symmetries seem to satisfy the bound in a
trivial manner. We comment on the case of discrete symmetries and close by
performing some checks for the bound in higher dimensions in the context of
string theory.Comment: 15 pages, 1 figure, Late
Overlap properties of geometric expanders
The {\em overlap number} of a finite -uniform hypergraph is
defined as the largest constant such that no matter how we map
the vertices of into , there is a point covered by at least a
-fraction of the simplices induced by the images of its hyperedges.
In~\cite{Gro2}, motivated by the search for an analogue of the notion of graph
expansion for higher dimensional simplicial complexes, it was asked whether or
not there exists a sequence of arbitrarily large
-uniform hypergraphs with bounded degree, for which . Using both random methods and explicit constructions, we answer this
question positively by constructing infinite families of -uniform
hypergraphs with bounded degree such that their overlap numbers are bounded
from below by a positive constant . We also show that, for every ,
the best value of the constant that can be achieved by such a
construction is asymptotically equal to the limit of the overlap numbers of the
complete -uniform hypergraphs with vertices, as
. For the proof of the latter statement, we establish the
following geometric partitioning result of independent interest. For any
and any , there exists satisfying the
following condition. For any , for any point and
for any finite Borel measure on with respect to which
every hyperplane has measure , there is a partition into measurable parts of equal measure such that all but
at most an -fraction of the -tuples
have the property that either all simplices with
one vertex in each contain or none of these simplices contain
Molecular Imaging in Synthetic Biology, and Synthetic Biology in Molecular Imaging
Biomedical synthetic biology is an emerging field in which cells are engineered at the genetic level to carry out novel functions with relevance to biomedical and industrial applications. This approach promises new treatments, imaging tools, and diagnostics for diseases ranging from gastrointestinal inflammatory syndromes to cancer, diabetes, and neurodegeneration. As these cellular technologies undergo pre-clinical and clinical development, it is becoming essential to monitor their location and function in vivo, necessitating appropriate molecular imaging strategies, and therefore, we have created an interest group within the World Molecular Imaging Society focusing on synthetic biology and reporter gene technologies. Here, we highlight recent advances in biomedical synthetic biology, including bacterial therapy, immunotherapy, and regenerative medicine. We then discuss emerging molecular imaging approaches to facilitate in vivo applications, focusing on reporter genes for noninvasive modalities such as magnetic resonance, ultrasound, photoacoustic imaging, bioluminescence, and radionuclear imaging. Because reporter genes can be incorporated directly into engineered genetic circuits, they are particularly well suited to imaging synthetic biological constructs, and developing them provides opportunities for creative molecular and genetic engineering
Extinction of metastable stochastic populations
We investigate extinction of a long-lived self-regulating stochastic
population, caused by intrinsic (demographic) noise. Extinction typically
occurs via one of two scenarios depending on whether the absorbing state n=0 is
a repelling (scenario A) or attracting (scenario B) point of the deterministic
rate equation. In scenario A the metastable stochastic population resides in
the vicinity of an attracting fixed point next to the repelling point n=0. In
scenario B there is an intermediate repelling point n=n_1 between the
attracting point n=0 and another attracting point n=n_2 in the vicinity of
which the metastable population resides. The crux of the theory is WKB method
which assumes that the typical population size in the metastable state is
large. Starting from the master equation, we calculate the quasi-stationary
probability distribution of the population sizes and the (exponentially long)
mean time to extinction for each of the two scenarios. When necessary, the WKB
approximation is complemented (i) by a recursive solution of the
quasi-stationary master equation at small n and (ii) by the van Kampen
system-size expansion, valid near the fixed points of the deterministic rate
equation. The theory yields both entropic barriers to extinction and
pre-exponential factors, and holds for a general set of multi-step processes
when detailed balance is broken. The results simplify considerably for
single-step processes and near the characteristic bifurcations of scenarios A
and B.Comment: 19 pages, 7 figure
Reduction of quantum noise in optical interferometers using squeezed light
We study the photon counting noise in optical interferometers used for
gravitational wave detection. In order to reduce quantum noise a squeezed
vacuum state is injected into the usually unused input port. Here, we
specifically investigate the so called `dark port case', when the beam splitter
is oriented close to 90{\deg} to the incoming laser beam, such that nearly all
photons go to one output port of the interferometer, and only a small fraction
of photons is seen in the other port (`dark port'). For this case it had been
suggested that signal amplification is possible without concurrent noise
amplification [R.Barak and Y.Ben-Aryeh, J.Opt.Soc.Am.B25(361)2008]. We show
that by injection of a squeezed vacuum state into the second input port,
counting noise is reduced for large values of the squeezing factor, however the
signal is not amplified. Signal strength only depends on the intensity of the
laser beam.Comment: 8 pages, 1 figur
On population extinction risk in the aftermath of a catastrophic event
We investigate how a catastrophic event (modeled as a temporary fall of the
reproduction rate) increases the extinction probability of an isolated
self-regulated stochastic population. Using a variant of the Verhulst logistic
model as an example, we combine the probability generating function technique
with an eikonal approximation to evaluate the exponentially large increase in
the extinction probability caused by the catastrophe. This quantity is given by
the eikonal action computed over "the optimal path" (instanton) of an effective
classical Hamiltonian system with a time-dependent Hamiltonian. For a general
catastrophe the eikonal equations can be solved numerically. For simple models
of catastrophic events analytic solutions can be obtained. One such solution
becomes quite simple close to the bifurcation point of the Verhulst model. The
eikonal results for the increase in the extinction probability caused by a
catastrophe agree well with numerical solutions of the master equation.Comment: 11 pages, 11 figure
Massive and massless Dirac fermions in Pb1-xSnxTe topological crystalline insulator probed by magneto-optical absorption
Dirac fermions in condensed matter physics hold great promise for novel
fundamental physics, quantum devices and data storage applications. IV-VI
semiconductors, in the inverted regime, have been recently shown to exhibit
massless topological surface Dirac fermions protected by crystalline symmetry,
as well as massive bulk Dirac fermions. Under a strong magnetic field (B), both
surface and bulk states are quantized into Landau levels that disperse as
B^1/2, and are thus difficult to distinguish. In this work, magneto-optical
absorption is used to probe the Landau levels of high mobility Bi-doped
Pb0.54Sn0.46Te topological crystalline insulator (111)-oriented films. The high
mobility achieved in these thin film structures allows us to probe and
distinguish the Landau levels of both surface and bulk Dirac fermions and
extract valuable quantitative information about their physical properties. This
work paves the way for future magnetooptical and electronic transport
experiments aimed at manipulating the band topology of such materials.Comment: supplementary material included, to appear in Scientific Report
- …
