3,564 research outputs found
Spacecraft Stabilization and Control for Capture of Non-Cooperative Space Objects
This paper addresses stabilization and control issues in autonomous capture and manipulation of non-cooperative space objects such as asteroids, space debris, and orbital spacecraft in need of servicing. Such objects are characterized by unknown mass-inertia properties, unknown rotational motion, and irregular shapes, which makes it a challenging control problem. The problem is further compounded by the presence of inherent nonlinearities, signi cant elastic modes with low damping, and parameter uncertainties in the spacecraft. Robust dissipativity-based control laws are presented and are shown to provide global asymptotic stability in spite of model uncertainties and nonlinearities. It is shown that robust stabilization can be accomplished via model-independent dissipativity-based controllers using thrusters alone, while stabilization with attitude and position control can be accomplished using thrusters and torque actuators
Methods of Blood Pressure Measurement in the ICU*
OBJECTIVE:: Minimal clinical research has investigated the significance of different blood pressure monitoring techniques in the ICU and whether systolic vs. mean blood pressures should be targeted in therapeutic protocols and in defining clinical study cohorts. The objectives of this study are to compare real-world invasive arterial blood pressure with noninvasive blood pressure, and to determine if differences between the two techniques have clinical implications. DESIGN:: We conducted a retrospective study comparing invasive arterial blood pressure and noninvasive blood pressure measurements using a large ICU database. We performed pairwise comparison between concurrent measures of invasive arterial blood pressure and noninvasive blood pressure. We studied the association of systolic and mean invasive arterial blood pressure and noninvasive blood pressure with acute kidney injury, and with ICU mortality. SETTING:: Adult intensive care units at a tertiary care hospital. PATIENTS:: Adult patients admitted to intensive care units between 2001 and 2007. INTERVENTIONS:: None. MEASUREMENTS AND MAIN RESULTS:: Pairwise analysis of 27,022 simultaneously measured invasive arterial blood pressure/noninvasive blood pressure pairs indicated that noninvasive blood pressure overestimated systolic invasive arterial blood pressure during hypotension. Analysis of acute kidney injury and ICU mortality involved 1,633 and 4,957 patients, respectively. Our results indicated that hypotensive systolic noninvasive blood pressure readings were associated with a higher acute kidney injury prevalence (p = 0.008) and ICU mortality (p < 0.001) than systolic invasive arterial blood pressure in the same range (≤70 mm Hg). Noninvasive blood pressure and invasive arterial blood pressure mean arterial pressures showed better agreement; acute kidney injury prevalence (p = 0.28) and ICU mortality (p = 0.76) associated with hypotensive mean arterial pressure readings (≤60 mm Hg) were independent of measurement technique. CONCLUSIONS:: Clinically significant discrepancies exist between invasive and noninvasive systolic blood pressure measurements during hypotension. Mean blood pressure from both techniques may be interpreted in a consistent manner in assessing patients' prognosis. Our results suggest that mean rather than systolic blood pressure is the pre ferred metric in the ICU to guide therapy.National Institute of Biomedical Imaging and Bioengineering (U.S.) (Grant R01EB001659
In silico and in vitro drug screening identifies new therapeutic approaches for Ewing sarcoma.
The long-term overall survival of Ewing sarcoma (EWS) patients remains poor; less than 30% of patients with metastatic or recurrent disease survive despite aggressive combinations of chemotherapy, radiation and surgery. To identify new therapeutic options, we employed a multi-pronged approach using in silico predictions of drug activity via an integrated bioinformatics approach in parallel with an in vitro screen of FDA-approved drugs. Twenty-seven drugs and forty-six drugs were identified, respectively, to have anti-proliferative effects for EWS, including several classes of drugs in both screening approaches. Among these drugs, 30 were extensively validated as mono-therapeutic agents and 9 in 14 various combinations in vitro. Two drugs, auranofin, a thioredoxin reductase inhibitor, and ganetespib, an HSP90 inhibitor, were predicted to have anti-cancer activities in silico and were confirmed active across a panel of genetically diverse EWS cells. When given in combination, the survival rate in vivo was superior compared to auranofin or ganetespib alone. Importantly, extensive formulations, dose tolerance, and pharmacokinetics studies demonstrated that auranofin requires alternative delivery routes to achieve therapeutically effective levels of the gold compound. These combined screening approaches provide a rapid means to identify new treatment options for patients with a rare and often-fatal disease
Perspectives in quality: designing the WHO Surgical Safety Checklist
The World Health Organization's Patient Safety Programme created an initiative to improve the safety of surgery around the world. In order to accomplish this goal the programme team developed a checklist with items that could and, if at all possible, should be practised in all settings where surgery takes place. There is little guidance in the literature regarding methods for creating a medical checklist. The airline industry, however, has more than 70 years of experience in developing and using checklists. The authors of the WHO Surgical Safety Checklist drew lessons from the aviation experience to create a safety tool that supports essential clinical practice. In order to inform the methodology for development of future checklists in health care, we review how we applied lessons learned from the aviation experience in checklist development to the development of the Surgical Safety Checklist and also discuss the differences that exist between aviation and medicine that impact the use of checklists in health car
Recommended from our members
Enabling precision medicine in neonatology, an integrated repository for preterm birth research.
Preterm birth, or the delivery of an infant prior to 37 weeks of gestation, is a significant cause of infant morbidity and mortality. In the last decade, the advent and continued development of molecular profiling technologies has enabled researchers to generate vast amount of 'omics' data, which together with integrative computational approaches, can help refine the current knowledge about disease mechanisms, diagnostics, and therapeutics. Here we describe the March of Dimes' Database for Preterm Birth Research (http://www.immport.org/resources/mod), a unique resource that contains a variety of 'omics' datasets related to preterm birth. The database is open publicly, and as of January 2018, links 13 molecular studies with data across tens of thousands of patients from 6 measurement modalities. The data in the repository are highly diverse and include genomic, transcriptomic, immunological, and microbiome data. Relevant datasets are augmented with additional molecular characterizations of almost 25,000 biological samples from public databases. We believe our data-sharing efforts will lead to enhanced research collaborations and coordination accelerating the overall pace of discovery in preterm birth research
Presenting signs and patient co-variables in Gaucher disease : outcome of the Gaucher Earlier Diagnosis Consensus (GED-C) Delphi initiative
© 2018 The Authors. Internal Medicine Journal by Wiley Publishing Asia Pty Ltd on behalf of Royal Australasian College of Physicians.Background: Gaucher disease (GD) presents with a range of signs and symptoms. Physicians can fail to recognise the early stages of GD owing to a lack of disease awareness, which can lead to significant diagnostic delays and sometimes irreversible but avoidable morbidities. Aim: The Gaucher Earlier Diagnosis Consensus (GED-C) initiative aimed to identify signs and co-variables considered most indicative of early type 1 and type 3 GD, to help non-specialists identify ‘at-risk’ patients who may benefit from diagnostic testing. Methods: An anonymous, three-round Delphi consensus process was deployed among a global panel of 22 specialists in GD (median experience 17.5 years, collectively managing almost 3000 patients). The rounds entailed data gathering, then importance ranking and establishment of consensus, using 5-point Likert scales and scoring thresholds defined a priori. Results: For type 1 disease, seven major signs (splenomegaly, thrombocytopenia, bone-related manifestations, anaemia, hyperferritinaemia, hepatomegaly and gammopathy) and two major co-variables (family history of GD and Ashkenazi-Jewish ancestry) were identified. For type 3 disease, nine major signs (splenomegaly, oculomotor disturbances, thrombocytopenia, epilepsy, anaemia, hepatomegaly, bone pain, motor disturbances and kyphosis) and one major co-variable (family history of GD) were identified. Lack of disease awareness, overlooking mild early signs and failure to consider GD as a diagnostic differential were considered major barriers to early diagnosis. Conclusion: The signs and co-variables identified in the GED-C initiative as potentially indicative of early GD will help to guide non-specialists and raise their index of suspicion in identifying patients potentially suitable for diagnostic testing for GD.Peer reviewedFinal Published versio
The targeted delivery of multicomponent cargos to cancer cells by nanoporous particle-supported lipid bilayers.
Encapsulation of drugs within nanocarriers that selectively target malignant cells promises to mitigate side effects of conventional chemotherapy and to enable delivery of the unique drug combinations needed for personalized medicine. To realize this potential, however, targeted nanocarriers must simultaneously overcome multiple challenges, including specificity, stability and a high capacity for disparate cargos. Here we report porous nanoparticle-supported lipid bilayers (protocells) that synergistically combine properties of liposomes and nanoporous particles. Protocells modified with a targeting peptide that binds to human hepatocellular carcinoma exhibit a 10,000-fold greater affinity for human hepatocellular carcinoma than for hepatocytes, endothelial cells or immune cells. Furthermore, protocells can be loaded with combinations of therapeutic (drugs, small interfering RNA and toxins) and diagnostic (quantum dots) agents and modified to promote endosomal escape and nuclear accumulation of selected cargos. The enormous capacity of the high-surface-area nanoporous core combined with the enhanced targeting efficacy enabled by the fluid supported lipid bilayer enable a single protocell loaded with a drug cocktail to kill a drug-resistant human hepatocellular carcinoma cell, representing a 10(6)-fold improvement over comparable liposomes
- …
