2,354 research outputs found
Break-down of the single-active-electron approximation for one-photon ionization of the B state of H exposed to intense laser fields
Ionization, excitation, and de-excitation to the ground state is studied
theoretically for the first excited singlet state B of H
exposed to intense laser fields with photon energies in between about 3 eV and
13 eV. A parallel orientation of a linear polarized laser and the molecular
axis is considered. Within the dipole and the fixed-nuclei approximations the
time-dependent Schr\"odinger equation describing the electronic motion is
solved in full dimensionality and compared to simpler models. A dramatic
break-down of the single-active-electron approximation is found and explained
to be due to the inadequate description of the final continuum states.Comment: 9 pages, 4 figure
Carrier Transport in Magnesium Diboride: Role of Nano-inclusions
Anisotropic-gap and two-band effects smear out the superconducting transition
(Tc) in literature reported thermal conductivity of MgB2, where large
electronic contributions also suppress anomaly-manifestation in their
negligible phononic-parts. Present thermal transport results on scarcely
explored specimens featuring nano-inclusions exhibit a small but clear
Tc-signature, traced to relatively appreciable phononic conduction, and its
dominant electronic-scattering. The self-formed MgO as extended defects
strongly scatter the charge carriers and minutely the phonons with their
longer-mean-free-path near Tc. Conversely, near room temperature, the
shorter-dominant-wavelength phonon's transport is hugely affected by these
nanoparticles, undergoing ballistic to diffusive crossover and eventually
entering the Ioffe-Regel mobility threshold regime.Comment: 14 pages, 4 figures, 28 reference
Solving k-center Clustering (with Outliers) in MapReduce and Streaming, almost as Accurately as Sequentially.
Center-based clustering is a fundamental primitive for data analysis and becomes very challenging for large datasets. In this paper, we focus on the popular k-center variant which, given a set S of points from some metric space and a parameter k0, the algorithms yield solutions whose approximation ratios are a mere additive term \u3f5 away from those achievable by the best known polynomial-time sequential algorithms, a result that substantially improves upon the state of the art. Our algorithms are rather simple and adapt to the intrinsic complexity of the dataset, captured by the doubling dimension D of the metric space. Specifically, our analysis shows that the algorithms become very space-efficient for the important case of small (constant) D. These theoretical results are complemented with a set of experiments on real-world and synthetic datasets of up to over a billion points, which show that our algorithms yield better quality solutions over the state of the art while featuring excellent scalability, and that they also lend themselves to sequential implementations much faster than existing ones
Flavor Ratios of Astrophysical Neutrinos: Implications for Precision Measurements
We discuss flavor-mixing probabilities and flavor ratios of high energy
astrophysical neutrinos. In the first part of this paper, we expand the
neutrino flavor-fluxes in terms of the small parameters U_{e3} and pi/4 -
theta_{23}, and show that there are universal first and second order
corrections. The second order term can exceed the first order term, and so
should be included in any analytic study. We also investigate the probabilities
and ratios after a further expansion around the tribimaximal value of sin^2
theta_{12} = 1/3. In the second part of the paper, we discuss implications of
deviations of initial flavor ratios from the usually assumed, idealized flavor
compositions for pion, muon-damped, and neutron beam sources, viz., (1 : 2 :
0), (0 : 1 : 0), and (1 : 0 : 0), respectively. We show that even small
deviations have significant consequences for the observed flavor ratios at
Earth. If initial flavor deviations are not taken into account in analyses,
then false inferences for the values in the PMNS matrix elements (angles and
phase) may result.Comment: 32 pages, 15 figures. Minor changes, matches version in JHE
An Experimental and Multiphysics Based Numerical Study to Predict Automotive Fuel Tank Sloshing Noise
With significant decrease in the background noise in present day automobiles, liquid slosh noise from an automotive fuel tank is considered as a major irritant during acceleration and deceleration. All major international OEMs and their suppliers try to reduce sloshing noise by various design modifications in the fuel tank. However, most major activities reported in open literature are primarily based on performing various CAE and experimental studies in isolation. However, noise generation and its propagation is a multiphysics phenomenon, where fluid mechanics due to liquid sloshing affects structural behaviour of the fuel tank and its mountings which in turn affects noise generation and propagation. In the present study a multiphysics approach to noise generation has been used to predict liquid sloshing noise from a rectangular tank. Computational Fluid dynamics (CFD), Finite Element Analysis (FEA) and Boundary Element Method (BEM) simulation studies have been performed in a semi-coupled manner to predict noise. VOF based multiphase model along with k-ε turbulence model was used to perform the CFD studies. Sloshing Noise generated due to fluid interaction with structural walls is simulated using Vibro-acoustic model. An integrated model is developed to predict dynamic forces and vibration displacement on tank walls due to dynamic pressure loading on tank walls. Noise radiated from tank walls is modelled by Harmonic Boundary Element Method. Experimental and numerical studies have been performed to understand the mechanics of sloshing noise generation. Images from high speed video camera and noise measurement data have been used to compare with numerical models
Theoretical study of the thermal behavior of free and alumina-supported Fe-C nanoparticles
The thermal behavior of free and alumina-supported iron-carbon nanoparticles
is investigated via molecular dynamics simulations, in which the effect of the
substrate is treated with a simple Morse potential fitted to ab initio data. We
observe that the presence of the substrate raises the melting temperature of
medium and large nanoparticles ( = 0-0.16, = 80-1000, non-
magic numbers) by 40-60 K; it also plays an important role in defining the
ground state of smaller Fe nanoparticles ( = 50-80). The main focus of our
study is the investigation of Fe-C phase diagrams as a function of the
nanoparticle size. We find that as the cluster size decreases in the
1.1-1.6-nm-diameter range the eutectic point shifts significantly not only
toward lower temperatures, as expected from the Gibbs-Thomson law, but also
toward lower concentrations of C. The strong dependence of the maximum C
solubility on the Fe-C cluster size may have important implications for the
catalytic growth of carbon nanotubes by chemical vapor deposition.Comment: 13 pages, 11 figures, higher quality figures can be seen in article 9
at http://alpha.mems.duke.edu/wahyu
Influence of Mo on the Fe:Mo:C nano-catalyst thermodynamics for single-walled carbon nanotube growth
We explore the role of Mo in Fe:Mo nanocatalyst thermodynamics for
low-temperature chemical vapor deposition growth of single walled carbon
nanotubes (SWCNTs). By using the size-pressure approximation and ab initio
modeling, we prove that for both Fe-rich (~80% Fe or more) and Mo-rich (~50% Mo
or more) Fe:Mo clusters, the presence of carbon in the cluster causes
nucleation of Mo2C. This enhances the activity of the particle since it
releases Fe, which is initially bound in a stable Fe:Mo phase, so that it can
catalyze SWCNT growth. Furthermore, the presence of small concentrations of Mo
reduce the lower size limit of low-temperature steady-state growth from ~0.58nm
for pure Fe particles to ~0.52nm. Our ab initio-thermodynamic modeling explains
experimental results and establishes a new direction to search for better
catalysts.Comment: 7 pages, 3 figures. submitte
Signature of sterile species in atmospheric neutrino data at neutrino telescopes
The MiniBooNE results have still not been able to comprehensively rule out
the oscillation interpretation of the LSND experiment. So far the so-called
short baseline experiments with energy in the MeV range and baseline of few
meters have been probing the existence of sterile neutrinos. We show how
signatures of these extra sterile states could be obtained in TeV energy range
atmospheric neutrinos travelling distances of thousands of kilometers.
Atmospheric neutrinos in the TeV range would be detected by the upcoming
neutrino telescopes. Of course vacuum oscillations of these neutrinos would be
very small. However, we show that resonant matter effects inside the Earth
could enhance these very tiny oscillations into near-maximal transitions, which
should be hard to miss. We show that imprint of sterile neutrinos could be
unambiguously obtained in this high energy atmospheric neutrino event sample.
Not only would neutrino telescopes tell the presence of sterile neutrinos, it
should also be possible for them to distinguish between the different possible
mass and mixing scenarios with additional sterile states.Comment: 26 pages, 11 figures, Version to appear in JHE
The Frequency Dependent Conductivity of Electron Glasses
Results of DC and frequency dependent conductivity in the quantum limit, i.e.
hw > kT, for a broad range of dopant concentrations in nominally uncompensated,
crystalline phosphorous doped silicon and amorphous niobium-silicon alloys are
reported. These materials fall under the general category of disordered
insulating systems, which are referred to as electron glasses. Using microwave
resonant cavities and quasi-optical millimeter wave spectroscopy we are able to
study the frequency dependent response on the insulating side of the
metal-insulator transition. We identify a quantum critical regime, a Fermi
glass regime and a Coulomb glass regime. Our phenomenological results lead to a
phase diagram description, or taxonomy, of the electrodynamic response of
electron glass systems
- …
