903 research outputs found
Quasi-particle model of strongly interacting matter
The successful quasi-particle model is compared with recent lattice data of
the coefficients in the Taylor series expansion of the excess pressure at
finite temperature and baryon density. A chain of approximations, starting from
QCD to arrive at the model expressions for the entropy density, is presented.Comment: Nov 2004. 4pp. Invited talk given at 8th International Conference on
Strangeness in Quark Matter (SQM2004), Cape Town, South Africa, 15-20 Sep
200
Edge-Magnetoplasmon Wave-Packet Revivals in the Quantum Hall Effect
The quantum Hall effect is necessarily accompanied by low-energy excitations
localized at the edge of a two-dimensional electron system. For the case of
electrons interacting via the long-range Coulomb interaction, these excitations
are edge magnetoplasmons. We address the time evolution of localized
edge-magnetoplasmon wave packets. On short times the wave packets move along
the edge with classical E cross B drift. We show that on longer times the wave
packets can have properties similar to those of the Rydberg wave packets that
are produced in atoms using short-pulsed lasers. In particular, we show that
edge-magnetoplasmon wave packets can exhibit periodic revivals in which a
dispersed wave packet reassembles into a localized one. We propose the study of
edge-magnetoplasmon wave packets as a tool to investigate dynamical properties
of integer and fractional quantum-Hall edges. Various scenarios are discussed
for preparing the initial wave packet and for detecting it at a later time. We
comment on the importance of magnetoplasmon-phonon coupling and on quantum and
thermal fluctuations.Comment: 18 pages, RevTex, 7 figures and 2 tables included, Fig. 5 was
originally 3Mbyte and had to be bitmapped for submission to archive; in the
process it acquired distracting artifacts, to upload the better version, see
http://physics.indiana.edu/~uli/publ/projects.htm
Gravitational physics with antimatter
The production of low-energy antimatter provides unique opportunities to
search for new physics in an unexplored regime. Testing gravitational
interactions with antimatter is one such opportunity. Here a scenario based on
Lorentz and CPT violation in the Standard- Model Extension is considered in
which anomalous gravitational effects in antimatter could arise.Comment: 5 pages, presented at the International Conference on Exotic Atoms
(EXA 2008) and the 9th International Conference on Low Energy Antiproton
Physics (LEAP 2008), Vienna, Austria, September 200
Superrevivals in the quantum dynamics of a particle confined in a finite square well potential
We examine the revival features in wave packet dynamics of a particle
confined in a finite square well potential. The possibility of tunneling
modifies the revival pattern as compared to an infinite square well potential.
We study the dependence of the revival times on the depth of the square well
and predict the existence of superrevivals. The nature of these superrevivals
is compared with similar features seen in the dynamics of wavepackets in an
anharmonic oscillator potential.Comment: 8 pages in Latex two-column format with 5 figures (eps). To appear in
Physical Review
Long-Term Evolution and Revival Structure of Rydberg Wave Packets for Hydrogen and Alkali-Metal Atoms
This paper begins with an examination of the revival structure and long-term
evolution of Rydberg wave packets for hydrogen. We show that after the initial
cycle of collapse and fractional/full revivals, which occurs on the time scale
, a new sequence of revivals begins. We find that the structure of
the new revivals is different from that of the fractional revivals. The new
revivals are characterized by periodicities in the motion of the wave packet
with periods that are fractions of the revival time scale . These
long-term periodicities result in the autocorrelation function at times greater
than having a self-similar resemblance to its structure for times
less than . The new sequence of revivals culminates with the
formation of a single wave packet that more closely resembles the initial wave
packet than does the full revival at time , i.e., a superrevival
forms. Explicit examples of the superrevival structure for both circular and
radial wave packets are given. We then study wave packets in alkali-metal
atoms, which are typically used in experiments. The behavior of these packets
is affected by the presence of quantum defects that modify the hydrogenic
revival time scales and periodicities. Their behavior can be treated
analytically using supersymmetry-based quantum-defect theory. We illustrate our
results for alkali-metal atoms with explicit examples of the revival structure
for radial wave packets in rubidium.Comment: To appear in Physical Review A, vol. 51, June 199
No CPT Violation from Tilted Brane in Neutral Meson--Antimeson Systems
Tilted brane in theories with large compact extra dimensions leads to
spontaneous symmetry breaking of the Lorentz and rotational invariance in four
dimensions, as shown by Dvali and Shifman. In this brief report, we point out
that the mentioned Lorentz symmetry breaking, although leading to the
CPT--violating interaction terms, cannot lead to the CPT violation in the
experimentally interesting -- and analogous systems.Comment: 5 pages, RevTe
Nambu-Goldstone Modes in Gravitational Theories with Spontaneous Lorentz Breaking
Spontaneous breaking of Lorentz symmetry has been suggested as a possible
mechanism that might occur in the context of a fundamental Planck-scale theory,
such as string theory or a quantum theory of gravity. However, if Lorentz
symmetry is spontaneously broken, two sets of questions immediately arise: what
is the fate of the Nambu-Goldstone modes, and can a Higgs mechanism occur? A
brief summary of some recent work looking at these questions is presented here.Comment: 6 pages. Presented at the meeting "From Quantum to Cosmos,"
Washington, D.C., May 2006; published in Int. J. Mod. Phys. D16:2357-2363,
200
CPT, T, and Lorentz Violation in Neutral-Meson Oscillations
Tests of CPT and Lorentz symmetry using neutral-meson oscillations are
studied within a formalism that allows for indirect CPT and T violation of
arbitrary size and is independent of phase conventions. The analysis is
particularly appropriate for studies of CPT and T violation in oscillations of
the heavy neutral mesons D, B_d, and B_s. The general Lorentz- and CPT-breaking
standard-model extension is used to derive an expression for the parameter for
CPT violation. It varies in a prescribed way with the magnitude and orientation
of the meson momentum and consequently also with sidereal time. Decay
probabilities are presented for both uncorrelated and correlated mesons, and
some implications for experiments are discussed.Comment: 11 pages, references added, accepted in Physical Review
Controlling the quantum dynamics of a mesoscopic spin bath in diamond
Understanding and mitigating decoherence is a key challenge for quantum
science and technology. The main source of decoherence for solid-state spin
systems is the uncontrolled spin bath environment. Here, we demonstrate quantum
control of a mesoscopic spin bath in diamond at room temperature that is
composed of electron spins of substitutional nitrogen impurities. The resulting
spin bath dynamics are probed using a single nitrogen-vacancy (NV) centre
electron spin as a magnetic field sensor. We exploit the spin bath control to
dynamically suppress dephasing of the NV spin by the spin bath. Furthermore, by
combining spin bath control with dynamical decoupling, we directly measure the
coherence and temporal correlations of different groups of bath spins. These
results uncover a new arena for fundamental studies on decoherence and enable
novel avenues for spin-based magnetometry and quantum information processing
- …
