422 research outputs found
The Spacetime Structure of Open Quantum Relativity
In the framework of the Open Quantum Relativity, we discuss the geodesic and
chronological structures related to the embedding procedure and dimensional reduction
from 5D to 4D spacetime. The emergence of an extra-force term, the deduction of the
masses of particles, two-time arrows and closed time-like solutions are considered
leading to a straightforward generalization of causality principle
Constraints on WIMP Dark Matter from the High Energy PAMELA data
A new calculation of the ratio in cosmic rays is compared to the
recent PAMELA data. The good match up to 100 GeV allows to set constraints on
exotic contributions from thermal WIMP dark matter candidates. We derive
stringent limits on possible enhancements of the WIMP \pbar flux: a =100 GeV (1 TeV) signal cannot be increased by more than a factor 6 (40)
without overrunning PAMELA data. Annihilation through the channel is
also inspected and cross-checked with data. This scenario is
strongly disfavored as it fails to simultaneously reproduce positron and
antiproton measurements.Comment: 5 pages, 5 figures, the bibliography has been updated, minor
modifications have been made in the tex
Gravitational Cherenkov Radiation from Extended Theories of Gravity
We linearize the field equations for higher order theories of gravity that
contain scalar invariants other than the Ricci scalar. We find that besides a
massless spin-2 field (the standard graviton), the theory contains also spin-0
and spin-2 massive modes with the latter being, in general, ghost modes. The
rate at which such particles would emit gravitational Cherenkov radiation is
calculated for some interesting physical cases.Comment: 6 pages, to appear in Mod. Phys. Lett. A. arXiv admin note: text
overlap with arXiv:0911.3094, arXiv:1105.619
Antimatter research in Space
Two of the most compelling issues facing astrophysics and cosmology today are
to understand the nature of the dark matter that pervades the universe and to
understand the apparent absence of cosmological antimatter. For both issues,
sensitive measurements of cosmic-ray antiprotons and positrons, in a wide
energy range, are crucial. Many different mechanisms can contribute to
antiprotons and positrons production, ranging from conventional reactions up to
exotic processes like neutralino annihilation. The open problems are so
fundamental (i.e.: is the universe symmetric in matter and antimatter ?) that
experiments in this field will probably be of the greatest interest in the next
years. Here we will summarize the present situation, showing the different
hypothesis and models and the experimental measurements needed to lead to a
more established scenario.Comment: 10 pages, 7 figures, Invited talk at the 18th European Cosmic Ray
Symposium, Moscow, July 2002, submitted to Journal of Physics
Kaluza-Klein Dark Matter and Galactic Antiprotons
Extra dimensions offer new ways to address long-standing problems in beyond
the standard model particle physics. In some classes of extra-dimensional
models, the lightest Kaluza-Klein particle is a viable dark matter candidate.
In this work, we study indirect detection of Kaluza-Klein dark matter via its
annihilation into antiprotons. We use a sophisticated galactic cosmic ray
diffusion model whose parameters are fully constrained by an extensive set of
experimental data. We discuss how fluxes of cosmic antiprotons can be used to
exclude low Kaluza-Klein masses.Comment: 14 pages, 7 figures, 3 table
Deriving the mass of particles from Extended Theories of Gravity in LHC era
We derive a geometrical approach to produce the mass of particles that could
be suitably tested at LHC. Starting from a 5D unification scheme, we show that
all the known interactions could be suitably deduced as an induced symmetry
breaking of the non-unitary GL(4)-group of diffeomorphisms. The deformations
inducing such a breaking act as vector bosons that, depending on the
gravitational mass states, can assume the role of interaction bosons like
gluons, electroweak bosons or photon. The further gravitational degrees of
freedom, emerging from the reduction mechanism in 4D, eliminate the hierarchy
problem since generate a cut-off comparable with electroweak one at TeV scales.
In this "economic" scheme, gravity should induce the other interactions in a
non-perturbative way.Comment: 30 pages, 1 figur
On The 5D Extra-Force according to Basini-Capozziello-Leon Formalism and five important features: Kar-Sinha Gravitational Bending of Light, Chung-Freese Superluminal Behaviour, Maartens-Clarkson Black Strings, Experimental measures of Extra Dimensions on board International Space Station(ISS) and the existence of the Particle due to a Higher Dimensional spacetime
We use the Conformal Metric as described in Kar-Sinha work on Gravitational
Bending of Light in a 5D Spacetime to recompute the equations of the 5D Force
in Basini-Capozziello-Leon Formalism and we arrive at a result that possesses
some advantages. The equations of the Extra Force as proposed by Leon are now
more elegant in Conformal Formalism and many algebraic terms can be simplified
or even suppressed. Also we recompute the Kar-Sinha Gravitational Bending of
Light affected by the presence of the Extra Dimension and analyze the
Superluminal Chung-Freese Features of this Formalism describing the advantages
of the Chung-Freese BraneWorld when compared to other Superluminal spacetime
metrics(eg:Warp Drive) and we describe why the Extra Dimension is invisible and
how the Extra Dimension could be made visible at least in theory.We also
examine the Maartens-Clarkson Black Holes in 5D(Black Strings) coupled to
massive Kaluza-Klein graviton modes predicted by Extra Dimensions theories and
we study experimental detection of Extra Dimensions on-board LIGO and LISA
Space Telescopes.We also propose the use of International Space Station(ISS) to
measure the additional terms(resulting from the presence of Extra Dimensions)
in the Kar-Sinha Gravitational Bending of Light in Outer Space to verify if we
really lives in a Higher Dimensional Spacetime.Also we demonstrate that
Particle can only exists if the 5D spacetime exists.Comment: Withdrawn: author no longer wishes to post work on arXi
Diffractive Interaction and Scaling Violation in pp->pi^0 Interaction and GeV Excess in Galactic Diffuse Gamma-Ray Spectrum of EGRET
We present here a new calculation of the gamma-ray spectrum from pp->pi^0 in
the Galactic ridge environment. The calculation includes the diffractive pp
interaction and incorporates the Feynman scaling violation for the first time.
Galactic diffuse gamma-rays come, predominantly, from pi^0->gamma gamma in the
sub-GeV to multi-GeV range. Hunter et al. found, however, an excess in the GeV
range ("GeV Excess") in the EGRET Galactic diffuse spectrum above the
prediction based on experimental pp->pi^0 cross-sections and the Feynman
scaling hypothesis. We show, in this work, that the diffractive process makes
the gamma-ray spectrum harder than the incident proton spectrum by ~0.05 in
power-law index, and, that the scaling violation produces 30-80% more pi^0 than
the scaling model for incident proton energies above 100GeV. Combination of the
two can explain about a half of the "GeV Excess" with the local cosmic proton
(power-law index ~2.7). The excess can be fully explained if the proton
spectral index in the Galactic ridge is a little harder (~0.2 in power-law
index) than the local spectrum. Given also in the paper is that the diffractive
process enhances e^+ over e^- and the scaling violation gives 50-100% higher
p-bar yield than without the violation, both in the multi-GeV range.Comment: 35 pages, 11 figures, to appear in Astrophysical Journa
Diffuse continuum gamma rays from the Galaxy
A new study of the diffuse Galactic gamma-ray continuum radiation is
presented, using a cosmic-ray propagation model which includes nucleons,
antiprotons, electrons, positrons, and synchrotron radiation. Our treatment of
the inverse Compton (IC) scattering includes the effect of anisotropic
scattering in the Galactic interstellar radiation field (ISRF) and a new
evaluation of the ISRF itself. Models based on locally measured electron and
nucleon spectra and synchrotron constraints are consistent with gamma-ray
measurements in the 30-500 MeV range, but outside this range excesses are
apparent. A harder nucleon spectrum is considered but fitting to gamma rays
causes it to violate limits from positrons and antiprotons. A harder
interstellar electron spectrum allows the gamma-ray spectrum to be fitted above
1 GeV as well, and this can be further improved when combined with a modified
nucleon spectrum which still respects the limits imposed by antiprotons and
positrons. A large electron/IC halo is proposed which reproduces well the
high-latitude variation of gamma-ray emission. The halo contribution of
Galactic emission to the high-latitude gamma-ray intensity is large, with
implications for the study of the diffuse extragalactic component and
signatures of dark matter. The constraints provided by the radio synchrotron
spectral index do not allow all of the <30 MeV gamma-ray emission to be
explained in terms of a steep electron spectrum unless this takes the form of a
sharp upturn below 200 MeV. This leads us to prefer a source population as the
origin of the excess low-energy gamma rays.Comment: Final version accepted for publication in The Astrophysical Journal
(vol. 537, July 10, 2000 issue); Many Updates; 20 pages including 49
ps-figures, uses emulateapj.sty. More details can be found at
http://www.gamma.mpe-garching.mpg.de/~aws/aws.htm
Gravitation and inertia; a rearrangement of vacuum in gravity
We address the gravitation and inertia in the framework of 'general gauge
principle', which accounts for 'gravitation gauge group' generated by hidden
local internal symmetry implemented on the flat space. We connect this group to
nonlinear realization of the Lie group of 'distortion' of local internal
properties of six-dimensional flat space, which is assumed as a toy model
underlying four-dimensional Minkowski space. The agreement between proposed
gravitational theory and available observational verifications is satisfactory.
We construct relativistic field theory of inertia and derive the relativistic
law of inertia. This theory furnishes justification for introduction of the
Principle of Equivalence. We address the rearrangement of vacuum state in
gravity resulting from these ideas.Comment: 17 pages, no figures, revtex4, Accepted for publication in Astrophys.
Space Sc
- …
