5,528 research outputs found
Risky neighborhoods? House appreciation in underserved areas
This research project will investigate house price appreciation trends in traditionally underserved areas. The primary goal is to develop and test a methodology to determine what part of a home (appreciation)is due to structural and neighborhood effects, and what part may be attributable to other factors such as homeowners actions (including repair, maintenance, and upgrades). We will employ a space-time modeling framework to measure appreciation varying influences of structural and neighborhood, and other factors on appreciation overtime. We will compare appreciation trends across different submarkets (underserved and conventional) and for both high risk and low risk borrowers. The empirical analysis will employ thr TRW-REDI housing transaction data set for Miami MSA (USA) for the 1985-1993 period in conjunction with Census and American Housing Survey (AHS) data.
LHC Charge Asymmetry as Constraint on Models for the Tevatron Top Anomaly
The forward-backward asymmetry in top quark production at
the Tevatron has been observed to be anomalously large by both CDF and D0. It
has been suggested that a model with a coupling to and might
explain this anomaly, and other anomalies in mesons. Single-top-quark
production in this model is large, and arguably in conflict with Tevatron
measurements. However the model might still be viable if is
somewhat smaller than its current measured central value. We show that even
with smaller couplings, the model can be discovered (or strongly excluded) at
the LHC using the 2010 data sets. We find that a suitable charge-asymmetry
measurement is a powerful tool that can be used to constrain this and other
sources of anomalous single-top production, and perhaps other new high-energy
charge-asymmetric processes.Comment: 25 pages, 4 figures, note adde
Electromagnetic structure of charmed baryons in Lattice QCD
As a continuation of our recent work on the electromagnetic properties of the
doubly charmed baryon, we compute the charge radii and the magnetic
moments of the singly charmed , and the doubly charmed
baryons in 2+1 flavor Lattice QCD. In general, the charmed
baryons are found to be compact as compared to the proton. The charm quark acts
to decrease the size of the baryons to smaller values. We discuss the mechanism
behind the dependence of the charge radii on the light valence- and sea-quark
masses. The magnetic moments are found to be almost stable with respect to
changing quark mass. We investigate the individual quark sector contributions
to the charge radii and the magnetic moments. The magnetic moments of the
singly charmed baryons are found to be dominantly determined by the light quark
and the role of the charm quark is significantly enhanced for the doubly
charmed baryons.Comment: Updated results, improved analysis. Version to appear in JHE
A look inside charmed-strange baryons from lattice QCD
The electromagnetic form factors of the spin-3/2 baryons, namely
, , and , are
calculated in full QCD on PACS-CS lattices with a pion mass of
156(9) MeV. The electric charge radii and magnetic moments from the and
multipole form factors are extracted. Results for the electric quadrupole
form factors, , are also given. Quark sector contributions are computed
individually for each observable and then combined to obtain the baryon
properties. We find that the charm quark contributions are systematically
smaller than the strange-quark contributions in the case of the charge radii
and magnetic moments. moments of the and
provide a statistically significant data to conclude that their electric charge
distributions are deformed to an oblate shape. Properties of the spin-1/2
and baryons are also computed and a thorough
comparison is given. This complete study gives valuable hints about the
heavy-quark dynamics in charmed hadrons.Comment: 14 pages, 14 figures. Includes a subsection on the systematic effect
Information-Theoretic Measure of Genuine Multi-Qubit Entanglement
We consider pure quantum states of N qubits and study the genuine N-qubit
entanglement that is shared among all the N qubits. We introduce an
information-theoretic measure of genuine N-qubit entanglement based on
bipartite partitions. When N is an even number, this measure is presented in a
simple formula, which depends only on the purities of the partially reduced
density matrices. It can be easily computed theoretically and measured
experimentally. When N is an odd number, the measure can also be obtained in
principle.Comment: 5 pages, 2 figure
Instability and Periodic Deformation in Bilayer Membranes Induced by Freezing
The instability and periodic deformation of bilayer membranes during freezing
processes are studied as a function of the difference of the shape energy
between the high and the low temperature membrane states. It is shown that
there exists a threshold stability condition, bellow which a planar
configuration will be deformed. Among the deformed shapes, the periodic curved
square textures are shown being one kind of the solutions of the associated
shape equation. In consistency with recent expe rimental observations, the
optimal ratio of period and amplitude for such a texture is found to be
approximately equal to (2)^{1/2}\pi.Comment: 8 pages in Latex form, 1 Postscript figure. To be appear in Mod.
Phys. Lett. B. 199
Electromagnetic properties of doubly charmed baryons in Lattice QCD
We compute the electromagnetic properties of \Xi_cc baryons in 2+1 flavor
Lattice QCD. By measuring the electric charge and magnetic form factors of
\Xi_cc baryons, we extract the magnetic moments, charge and magnetic radii as
well as the \Xi_cc \Xi_cc \rho coupling constant, which provide important
information to understand the size, shape and couplings of the doubly charmed
baryons. We find that the two heavy charm quarks drive the charge radii and the
magnetic moment of \Xi_cc to smaller values as compared to those of, e.g., the
proton.Comment: 15 pages, 5 figures; added discussions and references, version
accepted by PL
Force Modulating Dynamic Disorder: Physical Theory of Catch-slip bond Transitions in Receptor-Ligand Forced Dissociation Experiments
Recently experiments showed that some adhesive receptor-ligand complexes
increase their lifetimes when they are stretched by mechanical force, while the
force increase beyond some thresholds their lifetimes decrease. Several
specific chemical kinetic models have been developed to explain the intriguing
transitions from the "catch-bonds" to the "slip-bonds". In this work we suggest
that the counterintuitive forced dissociation of the complexes is a typical
rate process with dynamic disorder. An uniform one-dimension force modulating
Agmon-Hopfield model is used to quantitatively describe the transitions
observed in the single bond P-selctin glycoprotein ligand
1(PSGL-1)P-selectin forced dissociation experiments, which were respectively
carried out on the constant force [Marshall, {\it et al.}, (2003) Nature {\bf
423}, 190-193] and the force steady- or jump-ramp [Evans {\it et al.}, (2004)
Proc. Natl. Acad. Sci. USA {\bf 98}, 11281-11286] modes. Our calculation shows
that the novel catch-slip bond transition arises from a competition of the two
components of external applied force along the dissociation reaction coordinate
and the complex conformational coordinate: the former accelerates the
dissociation by lowering the height of the energy barrier between the bound and
free states (slip), while the later stabilizes the complex by dragging the
system to the higher barrier height (catch).Comment: 8 pages, 3 figures, submitte
- …
