4,247 research outputs found
Statistics of Giant Radio Halos from Electron Reacceleration Models
The most important evidence of non-thermal phenomena in galaxy clusters comes
from Giant Radio Halos (GRHs), synchrotron radio sources extended over Mpc
scales, detected in a growing number of massive galaxy clusters. A promising
possibility to explain these sources is given by "in situ" stochastic
reacceleration of relativistic electrons by turbulence generated in the cluster
volume during merger events. Cassano & Brunetti (2005) have recently shown that
the expected fraction of clusters with GRHs and the increase of such a fraction
with cluster mass can be reconciled with present observations provided that a
fraction of 20-30 % of the turbulence in clusters is in the form of
compressible modes. In this work we extend these calculations by including a
scaling of the magnetic field strength with cluster mass. We show that the
observed correlations between the synchrotron radio power of a sample of 17
GRHs and the X-ray properties of the hosting clusters are consistent with, and
actually predicted by a magnetic field dependence on the virial mass of the
form B \propto M^b, with b>0.5 and typical micro Gauss strengths of the average
B intensity. The occurrence of GRHs as a function of both cluster mass and
redshift is obtained. The most relevant findings are that the predicted
luminosity functions of GRHs are peaked around a power P_{1.4 GHz} 10^{24}
W/Hz, and severely cut-off at low radio powers due to the decrease of the
electron reacceleration in smaller galaxy clusters. We expect a total number of
GRHs to be discovered at ~mJy radio fluxes of ~100 at 1.4 GHz. Finally, the
occurrence of GRHs and their number counts at 150 MHz are estimated in view of
the fortcoming operation of low frequency observatories (LOFAR, LWA) and
compared with those at higher radio frequencies.Comment: 21 pages, 17 figures, accepted for publication in MNRA
An elusive radio halo in the merging cluster Abell 781?
Deep radio observations of the galaxy cluster Abell 781 have been carried out
using the Giant Metrewave Radio Telescope at 325 MHz and have been compared to
previous 610 MHz observations and to archival VLA 1.4 GHz data. The radio
emission from the cluster is dominated by a diffuse source located at the
outskirts of the X-ray emission, which we tentatively classify as a radio
relic. We detected residual diffuse emission at the cluster centre at the level
of S(325 MHz)~15-20 mJy. Our analysis disagrees with Govoni et al. (2011), and
on the basis of simple spectral considerations we do not support their claim of
a radio halo with flux density of 20-30 mJy at 1.4 GHz. Abell 781, a massive
and merging cluster, is an intriguing case. Assuming that the residual emission
is indicative of the presence of a radio halo barely detectable at our
sensitivity level, it could be a very steep spectrum source.Comment: 5 pages, 4 figures, 1 table - Accepted for publication on Monthly
Notices of the Royal Astronomical Society Letter
Cluster Mergers, Radio Halos and Hard X-ray Tails: A Statistical Magneto-Turbulent Model
There is now firm evidence that the ICM consists of a mixture of hot plasma,
magnetic fields and relativistic particles. The most important evidences for
non-thermal phenomena in galaxy clusters comes from the diffuse Mpc-scale
synchrotron radio emission (radio halos) observed in a growing number of
massive clusters (Feretti 2003) and from hard X-ray (HXR) excess emission
(detected in a few cases) which can be explained in terms of IC scattering of
relativistic electrons off the cosmic microwave background photons
(Fusco-Femiano et al. 2003). There are now growing evidences that giant radio
halos may be naturally accounted for by synchrotron emission from relativistic
electrons reaccelerated by some kind of turbulence generated in the cluster
volume during merger events (Brunetti 2003). With the aim to investigate the
connection between thermal and non-thermal properties of the ICM, we have
developed a statistical magneto-turbulent model which describes the evolution
of the thermal and non-thermal emission from clusters. We calculate the energy
and spectrum of the magnetosonic waves generated during cluster mergers, the
acceleration and evolution of relativistic electrons and thus the resulting
synchrotron and inverse Compton spectra. Here we give a brief description of
the main results, while a more detailed discussion will be presented in a
forthcoming paper. Einstein-De Sitter cosmology, km
, , is assumed.Comment: 3 pages, 2 figures. To appear in the proceedings of IAU Colloquium
195 - "Outskirts of galaxy clusters: intense life in the suburbs", Torino,
Italy, March 12-16, 200
Can giant radio halos probe the merging rate of galaxy clusters?
Radio and X-ray observations of galaxy clusters probe a direct link between
cluster mergers and giant radio halos (RH), suggesting that these sources can
be used as probes of the cluster merging rate with cosmic time. In this paper
we carry out an explorative study that combines the observed fractions of
merging clusters (fm) and RH (fRH) with the merging rate predicted by
cosmological simulations and attempt to infer constraints on merger properties
of clusters that appear disturbed in X-rays and of clusters with RH. We use
morphological parameters to identify merging systems and analyze the currently
largest sample of clusters with radio and X-ray data (M500>6d14 Msun, and
0.2<z<0.33, from the Planck SZ cluster catalogue). We found that in this sample
fm~62-67% while fRH~44-51%. The comparison of the theoretical f_m with the
observed one allows to constrain the combination (xi_m,tau_m), where xi_m and
tau_m are the minimum merger mass ratio and the timescale of merger-induced
disturbance. Assuming tau_m~ 2-3 Gyr, as constrained by simulations, we find
that the observed f_m matches the theoretical one for xi_m~0.1-0.18. This is
consistent with optical and near-IR observations of clusters in the sample
(xi_m~0.14-0.16). The fact that RH are found only in a fraction of merging
clusters may suggest that merger events generating RH are characterized by
larger mass ratio; this seems supported by optical/near-IR observations of RH
clusters in the sample (xi_min~0.2-0.25). Alternatively, RH may be generated in
all mergers but their lifetime is shorter than \tau_m (by ~ fRH/fm). This is an
explorative study, however it suggests that follow up studies using the
forthcoming radio surveys and adequate numerical simulations have the potential
to derive quantitative constraints on the link between cluster merging rate and
RH at different cosmic epochs and for different cluster masses.Comment: 10 pages, 3 figures, accepted for publication in A&
The cluster relic source in A521
We present high sensitivity radio observations of the merging cluster A521,
at a mean redsfhit z=0.247. The observations were carried out with the GMRT at
610 MHz and cover a region of 1 square degree, with a sensitivity limit
of = 35 Jy b. The most relevant result of these
observations is the presence of a radio relic at the cluster periphery, at the
edge of a region where group infalling into the main cluster is taking place.
Thanks to the wealth of information available in the literature in the optical
and X-ray bands, a multi--band study of the relic and its surroundings was
performed. Our analysis is suggestive of a connection between this source and
the complex ongoing merger in the A521 region. The relic might be ``revived'
fossil radio plasma through adiabatic compression of the magnetic field or
shock re--acceleration due to the merger events. We also briefly discussed the
possibility that this source is the result of induced ram pressure stripping of
radio lobes associated with the nearby cluster radio galaxy J0454--1016a.
Allowing for the large uncertainties due to the small statistics, the number of
radio emitting early--type galaxies found in A521 is consistent with the
expectations from the standard radio luminosity function for local (z0.09)
cluster ellipticals.Comment: 30 pages 8 figures, 5 tables, accepted by New Astronom
GMRT Radio Halo Survey in galaxy clusters at z = 0.2 -- 0.4. II.The eBCS clusters and analysis of the complete sample
We present the results of the GMRT cluster radio halo survey. The main
purposes of our observational project are to measure which fraction of massive
galaxy clusters in the redshift range z=0.2--0.4 hosts a radio halo, and to
constrain the expectations of the particle re--acceleration model for the
origin of the non--thermal radio emission. We selected a complete sample of 50
clusters in the X-ray band from the REFLEX (27) and the eBCS (23) catalogues.
In this paper we present Giant Metrewave Radio Telescope (GMRT) observations at
610 MHz for all clusters still lacking high sensitivity radio information, i.e.
16 eBCS and 7 REFLEX clusters, thus completing the radio information for the
whole sample. The typical sensitivity in our images is in the range 1Jy b. We found a radio halo in A697, a diffuse
peripheral source of unclear nature in A781, a core--halo source in Z7160, a
candidate radio halo in A1682 and ``suspect'' central emission in Z2661.
Including the literature information, a total of 10 clusters in the sample host
a radio halo. A very important result of our work is that 25 out of the 34
clusters observed with the GMRT do not host extended central emission at the
sensitivity level of our observations, and for 20 of them firm upper limits to
the radio power of a giant radio halo were derived. The GMRT Radio Halo Survey
shows that radio halos are not common, and our findings on the fraction of
giant radio halos in massive clusters are consistent with the statistical
expectations based on the re--acceleration model. Our results favour primary to
secondary electron models.Comment: A&A in press, 17 pages, 12 figures, 4 tables Version with high
quality figures available on web at
http://www.ira.inaf.it/~tventuri/pap/Venturi_web.pd
Is the Sunyaev-Zeldovich effect responsible for the observed steepening in the spectrum of the Coma radio halo ?
The spectrum of the radio halo in the Coma cluster is measured over almost
two decades in frequency. The current radio data show a steepening of the
spectrum at higher frequencies, which has implications for models of the radio
halo origin. There is an on-going debate on the possibility that the observed
steepening is not intrinsic to the emitted radiation, but is instead caused by
the SZ effect. Recently, the Planck satellite measured the SZ signal and its
spatial distribution in the Coma cluster allowing to test this hypothesis.
Using the Planck results, we calculated the modification of the radio halo
spectrum by the SZ effect in three different ways. With the first two methods
we measured the SZ-decrement within the aperture radii used for flux
measurements of the halo at the different frequencies. First we adopted the
global compilation of data from Thierbach et al. and a reference aperture
radius consistent with those used by the various authors. Second we used the
available brightness profiles of the halo at different frequencies to derive
the spectrum within two fixed apertures, and derived the SZ-decrement using
these apertures. As a third method we used the quasi-linear correlation between
the y and the radio-halo brightness at 330 MHz discovered by Planck to derive
the modification of the radio spectrum by the SZ-decrement in a way that is
almost independent of the adopted aperture radius. We found that the spectral
modification induced by the SZ-decrement is 4-5 times smaller than that
necessary to explain the observed steepening. Consequently a break or cut-off
in the spectrum of the emitting electrons is necessary to explain current data.
We also show that, if a steepening is absent from the emitted spectrum, future
deep observations at 5 GHz with single dishes are expected to measure a halo
flux in a 40 arcmin radius that would be 7-8 times higher than currently seen.Comment: 8 pages, 6 figures, accepted in Astronomy and Astrophysics (date of
acceptance 19/08/2013
An unlikely radio halo in the low X-ray luminosity galaxy cluster RXC J1514.9-1523
We report the discovery of a giant radio halo in the galaxy cluster RXC
J1514.9-1523 at z=0.22 with a relatively low X-ray luminosity, erg s. This faint, diffuse
radio source is detected with the Giant Metrewave Radio Telescope at 327 MHz.
The source is barely detected at 1.4 GHz in a NVSS pointing that we have
reanalyzed. The integrated radio spectrum of the halo is quite steep, with a
slope \alpha = 1.6 between 327 MHz and 1.4 GHz. While giant radio halos are
common in more X-ray luminous cluster mergers, there is a less than 10%
probability to detect a halo in systems with L_X \ltsim 8 \times 10^{44} erg
s. The detection of a new giant halo in this borderline luminosity
regime can be particularly useful for discriminating between the competing
theories for the origin of ultrarelativistic electrons in clusters.
Furthermore, if our steep radio spectral index is confirmed by future deeper
radio observations, this cluster would provide another example of the recently
discovered population of ultra-steep spectrum radio halos, predicted by the
model in which the cluster cosmic ray electrons are produced by turbulent
reacceleration.Comment: 4 pages, 2 figures - Accepted for publication on A&A Research Note
Deep 1.4 GHZ Follow Up of the Steep Spectrum Radio Halo in Abell 521
In a recent paper we reported on the discovery of a radio halo with very
steep spectrum in the merging galaxy cluster Abell 521 through observations
with the Giant Metrewave Radio Telescope (GMRT). We showed that the steep
spectrum of the halo is inconsistent with a secondary origin of the
relativistic electrons and supports a turbulent acceleration scenario. At that
time, due to the steep spectrum, the available observations at 1.4 GHz
(archival NRAO - Very Large Array - VLA CnB-configuration data) were not
adequate to accurately determine the flux density associated with the radio
halo. In this paper we report the detection at 1.4 GHz of the radio halo in
Abell 521 using deep VLA observations in the D-configuration. We use these new
data to confirm the steep-spectrum of the object. We consider Abell 521 the
prototype of a population of very-steep spectrum halos. This population is
predicted assuming that turbulence plays an important role in the acceleration
of relativistic particles in galaxy clusters, and we expect it will be unveiled
by future surveys at low frequencies with the LOFAR and LWA radio telescopes.Comment: 11 pages, 3 figures (figure 1 available in gif format only). Requires
aastex.cls - Accepted by Ap.
- …
