343 research outputs found

    Revealing the Structure of an Accretion Disk Through Energy Dependent X-ray Microlensing

    Full text link
    We present results from monitoring observations of the gravitationally lensed quasar RX J1131-1231 performed with the Chandra X-ray Observatory. The X-ray observations were planned with relatively long exposures that allowed a search for energy-dependent microlensing in the soft (0.2-2 keV) and hard (2-10 keV) light curves of the images of RX J1131-1231. We detect significant microlensing in the X-ray light-curves of images A and D, and energy-dependent microlensing of image D. The magnification of the soft band appears to be larger than that in the hard band by a factor of ~ 1.3 when image D becomes more magnified. This can be explained by the difference between a compact, softer-spectrum corona that is producing a more extended, harder spectrum reflection component off the disk. This is supported by the evolution of the fluorescent iron line in image D over three consecutive time-averaged phases of the light curve. In the first period, a Fe line at E = 6.36(-0.16,+0.13) keV is detected (at > 99% confidence). In the second period, two Fe lines are detected, one at E = 5.47(-0.08,+0.06) keV (detected at > 99% confidence) and another at E = 6.02(-0.07,+0.09) keV (marginally detected at > 90% confidence), and in the third period, a broadened Fe line at 6.42(-0.15,+0.19) keV is detected (at > 99% confidence). This evolution of the Fe line profile during the microlensing event is consistent with the line distortion expected when a caustic passes over the inner disk where the shape of the fluorescent Fe line is distorted by General Relativistic and Doppler effects.Comment: 20 pages, includes 10 figures, submitted to Ap

    Confirmation of and Variable Energy Injection by a Near-Relativistic Outflow in APM 08279+5255

    Full text link
    We present results from multi-epoch spectral analysis of XMM-Newton and Chandra observations of the broad absorption line (BAL) quasar APM 08279+5255. Our analysis shows significant X-ray BALs in all epochs with rest-frame energies lying in the range of ~ 6.7-18 keV. The X-ray BALs and 0.2-10 keV continuum show significant variability on timescales as short as 3.3 days (proper time) implying a source size-scale of ~ 10 r_g, where r_g is the gravitational radius. We find a large gradient in the outflow velocity of the X-ray absorbers with projected outflow velocities of up to 0.76 c. The maximum outflow velocity constrains the angle between the wind velocity and our line of sight to be less than ~ 22 degrees. We identify the following components of the outflow: (a) Highly ionized X-ray absorbing material (2.9 < logxi < 3.9) and a column density of log N_H ~ 23 outflowing at velocities of up to 0.76 c. (b) Low-ionization X-ray absorbing gas with log N_H ~ 22.8. We find that flatter spectra appear to result in lower outflow velocities. Based on our spectral analysis of observations of APM 08279+5255 over a period of 1.2 years (proper time) we estimate the mass-outflow rate and efficiency of the outflow to have varied between 16(-8,+12) M_solar yr^-1 and 64(-40,+66) M_solar yr^-1 and 0.18(-0.11,+0.15) to 1.7(-1.2+1.9), respectively. Assuming that the outflow properties of APM 08279+5255 are a common property of most quasars at similar redshifts, our results then imply that quasar winds are massive and energetic enough to influence significantly the formation of the host galaxy, provide significant metal enrichment to the interstellar medium and intergalactic medium, and are a viable mechanism for feedback at redshifts near the peak in the number density of galaxy mergers.Comment: 27 pages, includes 12 figures, accepted for publication in Ap

    The influence of gravitational lensing on the spectra of lensed QSOs

    Full text link
    We consider the influence of (milli/micro)lensing on the spectra of lensed QSOs. We propose a method for the observational detection of microlensing in the spectra of lensed QSOs and apply it to the spectra of the three lensed QSOs (PG 1115+080, QSO 1413+117 and QSO 0957+561) observed with Hubble Space Telescope (HST). We find that the flux ratio between images A1 and A2 of PG 1115+080 is wavelength-dependent and shows differential magnification between the emission lines and the continuum. We interpret this magnification as arising from millilensing. We also find that the temporal variations in the continuum of image C of QSO 1413+117 may be caused by microlensing, while the temporal variation observed in QSO 0957+561 was probably an intrinsic one.Comment: 11 pages, accepted for publication in MNRA

    Probing Broad Absorption Line Quasar Outflows: X-ray Insights

    Full text link
    Energetic outflows appear to occur in conjunction with active mass accretion onto supermassive black holes. These outflows are most readily observed in the approximately 10% of quasars with broad absorption lines, where the observer's line of sight passes through the wind. Until fairly recently, the paucity of X-ray data from these objects was notable, but now sensitive hard-band missions such as Chandra and XMM-Newton are routinely detecting broad absorption line quasars. The X-ray regime offers qualitatively new information for the understanding of these objects, and these new results must be taken into account in theoretical modeling of quasar winds.Comment: Submitted to Advances in Space Research for New X-ray Results from Clusters of Galaxies and Black Holes (Oct 2002; Houston, TX), eds. C. Done, E.M. Puchnarewicz, M.J. Ward. Requires cospar.sty (6 pgs, 5 figs

    X-ray Spectroscopy of QSOs with Broad Ultraviolet Absorption Lines

    Get PDF
    For the population of QSOs with broad ultraviolet absorption lines, we are just beginning to accumulate X-ray observations with enough counts for spectral analysis at CCD resolution. From a sample of eight QSOs [including four Broad Absorption Line (BAL) QSOs and three mini-BAL QSOs] with ASCA or Chandra spectra with more than 200 counts, general patterns are emerging. Their power-law X-ray continua are typical of normal QSOs with Gamma~2.0, and the signatures of a significant column density [N_H~(0.1-4)x10^{23} cm^{-2}] of intrinsic, absorbing gas are clear. Correcting the X-ray spectra for intrinsic absorption recovers a normal ultraviolet-to-X-ray flux ratio, indicating that the spectral energy distributions of this population are not inherently anomalous. In addition, a large fraction of our sample shows significant evidence for complexity in the absorption. The subset of BAL QSOs with broad MgII absorption apparently suffers from Compton-thick absorption completely obscuring the direct continuum in the 2-10 keV X-ray band, complicating any measurement of their intrinsic X-ray spectral shapes.Comment: 9 pages, 6 figures, uses AASTeX. Accepted to the Astrophysical Journa

    HS 1700+6416: the first high redshift non lensed NAL-QSO showing variable high velocity outflows

    Full text link
    We present a detailed analysis of the X-ray emission of HS 1700+6416, a high redshift (z=2.7348), luminous quasar, classified as a Narrow Absorption Line (NAL) quasar on the basis of its SDSS spectrum. The source has been observed 9 times by Chandra and once by XMM from 2000 to 2007. Long term variability is clearly detected, between the observations, in the 2-10 keV flux varying by a factor of three (~3-9x10^-14 erg s^-1 cm^-2) and in the amount of neutral absorption (Nh < 10^22 cm^-2 in 2000 and 2002 and Nh=4.4+-1.2x10^22 cm^-2 in 2007). Most interestingly, one broad absorption feature is clearly detected at 10.3+-0.7 keV (rest frame) in the 2000 Chandra observation, while two similar features, at 8.9+-0.4 and at 12.5+-0.7 keV, are visible when the 8 contiguous Chandra observations of 2007 are stacked together. In the XMM observation of 2002, strongly affected by background flares, there is a hint for a similar feature at 8.0+-0.3 keV. We interpreted these features as absorption lines from a high velocity, highly ionized (i.e. Fe XXV, FeXXVI) outflowing gas. In this scenario, the outflow velocities inferred are in the range v=0.12-0.59c. To reproduce the observed features, the gas must have high column density (Nh>3x10^23 cm^-2), high ionization parameter (log(xi)>3.3 erg cm s^-1) and a large range of velocities (Delta V~10^4 km s^-1). This Absorption Line QSO is the fourth high-z quasar displaying X-ray signatures of variable, high velocity outflows, and among these, is the only one non-lensed. A rough estimate of the minimum kinetic energy carried by the wind of up to 18% L(bol), based on a biconical geometry of the wind, implies that the amount of energy injected in the outflow environment is large enough to produce effective mechanical feedback.Comment: 10 pages, 6 figures. Accepted for publication in Astronomy and Astrophysic

    X-raying the Winds of Luminous Active Galaxies

    Full text link
    We briefly describe some recent observational results, mainly at X-ray wavelengths, on the winds of luminous active galactic nuclei (AGNs). These winds likely play a significant role in galaxy feedback. Topics covered include (1) Relations between X-ray and UV absorption in Broad Absorption Line (BAL) and mini-BAL quasars; (2) X-ray absorption in radio-loud BAL quasars; and (3) Evidence for relativistic iron K BALs in the X-ray spectra of a few bright quasars. We also mention some key outstanding problems and prospects for future advances; e.g., with the International X-ray Observatory (IXO).Comment: 7 pages, 3 figures, to appear in proceedings of the conference "The Monster's Fiery Breath: Feedback in Galaxies, Groups, and Clusters", June 2009, Madison, Wisconsi
    corecore