217 research outputs found
The Minimal Length of a Lagrangian Cobordism between Legendrians
To investigate the rigidity and flexibility of Lagrangian cobordisms between
Legendrian submanifolds, we investigate the minimal length of such a cobordism,
which is a -dimensional measurement of the non-cylindrical portion of the
cobordism. Our primary tool is a set of real-valued capacities for a Legendrian
submanifold, which are derived from a filtered version of Legendrian Contact
Homology. Relationships between capacities of Legendrians at the ends of a
Lagrangian cobordism yield lower bounds on the length of the cobordism. We
apply the capacities to Lagrangian cobordisms realizing vertical dilations
(which may be arbitrarily short) and contractions (whose lengths are bounded
below). We also study the interaction between length and the linking of
multiple cobordisms as well as the lengths of cobordisms derived from
non-trivial loops of Legendrian isotopies.Comment: 33 pages, 9 figures. v2: Minor corrections in response to referee
comments. More general statement in Proposition 3.3 and some reorganization
at the end of Section
Recommended from our members
Development of Reservoir Characterization Techniques and Production Models for Exploiting Naturally Fractured Reservoirs
Research continues on characterizing and modeling the behavior of naturally fractured reservoir systems. Work has progressed on developing techniques for estimating fracture properties from seismic and well log data, developing naturally fractured wellbore models, and developing a model to characterize the transfer of fluid from the matrix to the fracture system for use in the naturally fractured reservoir simulator
Sequential deconstruction-reconstruction of metal organic frameworks : an alternative strategy for synthesizing (multi)-layered ZIF composites
Here, we report the synthesis of (multi)-layered zeolitic imidazolate framework (ZIF-8/-67) composite particles via a sequential deconstruction-reconstruction process. We show that this process can be applied to construct ZIF-8-on-ZIF-67 composite particles whose cores are the initially etched particles. In addition, we demonstrate that introduction of functional inorganic nanoparticles (INPs) onto the crystal surface of etched particles does not disrupt ZIF particle reconstruction, opening new avenues for designing (multi)-layered ZIF-on-INP-on-ZIF composite particles comprising more than one class of inorganic nanoparticles. In these latter composites, the location of the inorganic nanoparticles inside each single metal-organic framework particle as well as of their separation at the nanoscale (20 nm) is controlled. Preliminary results show that (multi)-layered ZIF-on-INP-on-ZIF composite particles comprising a good sequence of inorganic nanoparticles can potentially catalyze cascade reactions
Diffusion of Chemically Reacting Fluids through Nonlinear Elastic Solids and 1D Stabilized Solutions
This paper summarizes a 1D adaptation (Hall et al., Math Mech Solids, 2014) of the reactive fluid–solid mixture theory of Hall and Rajagopal (Math Mech Solids 17(2):131–164, 2012), which considers an anisotropic viscous fluid diffusing and chemically reacting with an anisotropic elastic solid. The present implementation introduces a stabilized mixed finite element method for advection–diffusion–reaction phenomena, which is applied to 1D isothermal problems involving Fickian diffusion, oxidation of PMR-15 polyimide resin, and slurry infiltration. The energy and entropy production relations are captured via a Lagrange multiplier that results from imposing the constraint of maximum rate of entropy production, reducing the primary PDEs to the balance equations of mass and linear momentum for the fluid and the
solid, together with an equation for the Lagrange multiplier. The Fickian diffusion application considers a hyperbolic first order system with a boundary discontinuity and stable approach to the usual parabolic model. Results of the oxidation modeling of Tandon et al. (Polym Degrad Stab 91(8):1861–1869, 2006) are recovered by employing the reaction kinetics model and properties assumed there, while providing in addition the individual constituent kinematic and kinetic behaviors, thus adding rich interpretive detail in comparison to the original treatment (Tandon et al., Polym Degrad Stab 91 (8):1861–1869, 2006); two adjustable parameters describing coupled chemomechanical and purely chemical dissipation are added. The slurry infiltration application simulates the imposed mass deposition process and consequent effects on the kinematic and kinetic behaviors of the constituents.Ope
Meeting the Challenges Facing Wheat Production The Strategic Research Agenda of the Global Wheat Initiative
Wheat occupies a special role in global food security since, in addition to providing 20% of our carbohydrates and protein, almost 25% of the global production is traded internationally. The importance of wheat for food security was recognised by the Chief Agricultural Scientists of the G20 group of countries when they endorsed the establishment of the Wheat Initiative in 2011. The Wheat Initiative was tasked with supporting the wheat research community by facilitating col-laboration, information and resource sharing and helping to build the capacity to address chal-lenges facing production in an increasingly variable environment. Many countries invest in wheat research. Innovations in wheat breeding and agronomy have delivered enormous gains over the past few decades, with the average global yield increasing from just over 1 tonne per hectare in the early 1960s to around 3.5 tonnes in the past decade. These gains are threatened by climate change, the rapidly rising financial and environmental costs of fertilizer, and pesticides, combined with declines in water availability for irrigation in many regions. The international wheat research community has worked to identify major opportunities to help ensure that global wheat pro-duction can meet demand. The outcomes of these discussions are presented in this paper
Potassium Channel and NKCC Cotransporter Involvement in Ocular Refractive Control Mechanisms
Myopia affects well over 30% of adult humans globally. However, the underlying physiological mechanism is little understood. This study tested the hypothesis that ocular growth and refractive compensation to optical defocus can be controlled by manipulation of potassium and chloride ion-driven transretinal fluid movements to the choroid. Chicks were raised with +/−10D or zero power optical defocus rendering the focal plane of the eye in front of, behind, or at the level of the retinal photoreceptors respectively. Intravitreal injections of barium chloride, a non-specific inhibitor of potassium channels in the retina and RPE or bumetanide, a selective inhibitor of the sodium-potassium-chloride cotransporter were made, targeting fluid control mechanisms. Comparison of refractive compensation to 5mM Ba2+ and 10−5 M bumetanide compared with control saline injected eyes shows significant change for both positive and negative lens defocus for Ba2+ but significant change only for negative lens defocus with bumetanide ; ; ; ; ; ). Vitreous chamber depths showed a main effect for drug conditions with less depth change in response to defocus shown for Ba2+ relative to Saline, while bumetanide injected eyes showed a trend to increased depth without a significant interaction with applied defocus. The results indicate that both K channels and the NKCC cotransporter play a role in refractive compensation with NKCC blockade showing far more specificity for negative, compared with positive, lens defocus. Probable sites of action relevant to refractive control include the apical retinal pigment epithelium membrane and the photoreceptor/ON bipolar synapse. The similarities between the biometric effects of NKCC inhibition and biometric reports of the blockade of the retinal ON response, suggest a possible common mechanism. The selective inhibition of refractive compensation to negative lens in chick by loop diuretics such as bumetanide suggests that these drugs may be effective in the therapeutic management of human myopia
The Experimental and Numerical Studies on Gas Production from Hydrate Reservoir by Depressurization
Recommended from our members
Congenital Diarrhea and Cholestatic Liver Disease: Phenotypic Spectrum Associated with MYO5B Mutations.
Myosin Vb (MYO5B) is a motor protein that facilitates protein trafficking and recycling in polarized cells by RAB11- and RAB8-dependent mechanisms. Biallelic MYO5B mutations are identified in the majority of patients with microvillus inclusion disease (MVID). MVID is an intractable diarrhea of infantile onset with characteristic histopathologic findings that requires life-long parenteral nutrition or intestinal transplantation. A large number of such patients eventually develop cholestatic liver disease. Bi-allelic MYO5B mutations are also identified in a subset of patients with predominant early-onset cholestatic liver disease. We present here the compilation of 114 patients with disease-causing MYO5B genotypes, including 44 novel patients as well as 35 novel MYO5B mutations, and an analysis of MYO5B mutations with regard to functional consequences. Our data support the concept that (1) a complete lack of MYO5B protein or early MYO5B truncation causes predominant intestinal disease (MYO5B-MVID), (2) the expression of full-length mutant MYO5B proteins with residual function causes predominant cholestatic liver disease (MYO5B-PFIC), and (3) the expression of mutant MYO5B proteins without residual function causes both intestinal and hepatic disease (MYO5B-MIXED). Genotype-phenotype data are deposited in the existing open MYO5B database in order to improve disease diagnosis, prognosis, and genetic counseling
Molecular Dynamic Simulations of Montmorillonite–Organic Interactions under Varying Salinity: An Insight into Enhanced Oil Recovery
- …
