8,339 research outputs found

    sNASP and ASF1A function through both competitive and compatible modes of histone binding

    Get PDF
    Histone chaperones are proteins that interact with histones to regulate the thermodynamic process of nucleosome assembly. sNASP and ASF1 are conserved histone chaperones that interact with histones H3 and H4 and are found in a multi-chaperoning complex in vivo. Previously we identified a short peptide motif within H3 that binds to the TPR domain of sNASP with nanomolar affinity. Interestingly, this peptide motif is sequestered within the known ASF1–H3–H4 interface, raising the question of how these two proteins are found in complex together with histones when they share the same binding site. Here, we show that sNASP contains at least two additional histone interaction sites that, unlike the TPR–H3 peptide interaction, are compatible with ASF1A binding. These surfaces allow ASF1A to form a quaternary complex with both sNASP and H3–H4. Furthermore, we demonstrate that sNASP makes a specific complex with H3 on its own in vitro, but not with H4, suggesting that it could work upstream of ASF1A. Further, we show that sNASP and ASF1A are capable of folding an H3–H4 dimer in vitro under native conditions. These findings reveal a network of binding events that may promote the entry of histones H3 and H4 into the nucleosome assembly pathway

    HEP Applications Evaluation of the EDG Testbed and Middleware

    Full text link
    Workpackage 8 of the European Datagrid project was formed in January 2001 with representatives from the four LHC experiments, and with experiment independent people from five of the six main EDG partners. In September 2002 WP8 was strengthened by the addition of effort from BaBar and D0. The original mandate of WP8 was, following the definition of short- and long-term requirements, to port experiment software to the EDG middleware and testbed environment. A major additional activity has been testing the basic functionality and performance of this environment. This paper reviews experiences and evaluations in the areas of job submission, data management, mass storage handling, information systems and monitoring. It also comments on the problems of remote debugging, the portability of code, and scaling problems with increasing numbers of jobs, sites and nodes. Reference is made to the pioneeering work of Atlas and CMS in integrating the use of the EDG Testbed into their data challenges. A forward look is made to essential software developments within EDG and to the necessary cooperation between EDG and LCG for the LCG prototype due in mid 2003.Comment: Talk from the 2003 Computing in High Energy and Nuclear Physics Conference (CHEP03), La Jolla, CA, USA, March 2003, 7 pages. PSN THCT00

    Characterisation of the muon beams for the Muon Ionisation Cooling Experiment

    Get PDF
    A novel single-particle technique to measure emittance has been developed and used to characterise seventeen different muon beams for the Muon Ionisation Cooling Experiment (MICE). The muon beams, whose mean momenta vary from 171 to 281 MeV/c, have emittances of approximately 1.2–2.3 π mm-rad horizontally and 0.6–1.0 π mm-rad vertically, a horizontal dispersion of 90–190 mm and momentum spreads of about 25 MeV/c. There is reasonable agreement between the measured parameters of the beams and the results of simulations. The beams are found to meet the requirements of MICE

    Search for the standard model Higgs boson in the H to ZZ to 2l 2nu channel in pp collisions at sqrt(s) = 7 TeV

    Get PDF
    A search for the standard model Higgs boson in the H to ZZ to 2l 2nu decay channel, where l = e or mu, in pp collisions at a center-of-mass energy of 7 TeV is presented. The data were collected at the LHC, with the CMS detector, and correspond to an integrated luminosity of 4.6 inverse femtobarns. No significant excess is observed above the background expectation, and upper limits are set on the Higgs boson production cross section. The presence of the standard model Higgs boson with a mass in the 270-440 GeV range is excluded at 95% confidence level.Comment: Submitted to JHE

    Combined search for the quarks of a sequential fourth generation

    Get PDF
    Results are presented from a search for a fourth generation of quarks produced singly or in pairs in a data set corresponding to an integrated luminosity of 5 inverse femtobarns recorded by the CMS experiment at the LHC in 2011. A novel strategy has been developed for a combined search for quarks of the up and down type in decay channels with at least one isolated muon or electron. Limits on the mass of the fourth-generation quarks and the relevant Cabibbo-Kobayashi-Maskawa matrix elements are derived in the context of a simple extension of the standard model with a sequential fourth generation of fermions. The existence of mass-degenerate fourth-generation quarks with masses below 685 GeV is excluded at 95% confidence level for minimal off-diagonal mixing between the third- and the fourth-generation quarks. With a mass difference of 25 GeV between the quark masses, the obtained limit on the masses of the fourth-generation quarks shifts by about +/- 20 GeV. These results significantly reduce the allowed parameter space for a fourth generation of fermions.Comment: Replaced with published version. Added journal reference and DO
    corecore