17,761 research outputs found

    Death, Disease, and Dirty Power: Mortality and Health Damage Due to Air Pollution From Power Plants

    Get PDF
    Summarizes the findings of a study that looks at the contribution of air emissions from power plants to fine particle levels, and the impact of those emissions on human health. Discusses policies that would reduce power plant fine particle pollution

    System engineering considerations in spacecraft design

    Get PDF
    System engineering considerations in spacecraft desig

    Can a 3+2 Oscillation Model Explain the NuTeV Electroweak Results?

    Full text link
    The weak mixing angle result from NuTeV falls three standard deviations above the value determined by global electroweak fits. It has been suggested that one possible explanation for this result could be the oscillation of electron neutrinos in the NuTeV beam to sterile neutrinos. This article examines several cases of masses and mixings for 3+2 neutrino oscillation models which fit the current oscillation data at 99% CL. We conclude that electron to sterile neutrino oscillations can account for only up to a third of a standard deviation between the NuTeV determination of the weak mixing angle and the standard model.Comment: 3 pages, 2 figures, submitted to Brief Report

    Effects of Electricity on Living Tissue

    Get PDF

    Confronting the short-baseline oscillation anomalies with a single sterile neutrino and non-standard matter effects

    Full text link
    We examine the MiniBooNE neutrino, MiniBooNE antineutrino and LSND antineutrino data sets in a two-neutrino ν()μν()e\stackrel{\tiny{(-)}}{\nu}_{\mu}\rightarrow\stackrel{\tiny{(-)}}{\nu}_e oscillation approximation subject to non-standard matter effects. We assume those effects can be parametrized by an LL-independent effective potential, Vs=±AsV_s=\pm A_s, experienced only by an intermediate, non-weakly-interacting (sterile) neutrino state which we assume participates in the oscillation, where +/+/- corresponds to neutrino/antineutrino propagation. We discuss the mathematical framework in which such oscillations arise in detail, and derive the relevant oscillation probability as a function of the vacuum oscillation parameters Δm2\Delta m^2 and sin22θμe\sin^22\theta_{\mu e}, and the matter effect parameter AsA_s. We are able to successfully fit all three data sets, including the MiniBooNE low energy excess, with the following best-fit model parameters: Δm2=0.47\Delta m^2=0.47 eV2^2, sin22θμe=0.010\sin^22\theta_{\mu e}=0.010, and As=2.0×1010A_s=2.0\times10^{-10} eV. The χ2\chi^2-probability for the best fit corresponds to 21.6%, to be compared to 6.8% for a fit where AsA_s has been set to zero, corresponding to a (3+1) sterile neutrino oscillation model. We find that the compatibility between the three data sets corresponds to 17.4%, to be compared to 2.3% for As=0A_s=0. Finally, given the fit results, we examine consequences for reactor, solar, and atmospheric oscillations. For this paper, the presented model is empirically driven, but the results obtained can be directly used to investigate various phenomenological interpretations such as non-standard matter effects.Comment: 19 pages, 11 figures, 1 tabl

    Panel on the ASCE/EWRI Standards Practice Documents on Water Resources Alternatives in the Southwest

    Get PDF
    The EWRI of ASCE has developed numerous standards practice documents or model water codes for water resources alternatives. These include documents on regulated riparian model water, artificial recharge of ground water, atmospheric water management of fog & precipitation & hail suppression, and water infrastructure security enhancements. Others in the development process are on management of the control of erosion and sediment, aquifer storage and recovery, coefficent of conductivity, and concentrate management of desalination. The panel will briefly cover the ASCE standards development process, the ways of obtaining funding for the efforts, the joint effort with other organizations, and some brief details about each document mentioned above

    Sterile Neutrino Fits to Short Baseline Neutrino Oscillation Measurements

    Get PDF
    This paper reviews short baseline oscillation experiments as interpreted within the context of one, two, and three sterile neutrino models associated with additional neutrino mass states in the ~1 eV range. Appearance and disappearance signals and limits are considered. We show that fitting short baseline data sets to a (3+3) model, defined by three active and three sterile neutrinos, results in an overall goodness of fit of 67%, and a compatibility of 90% among all data sets -- to be compared to the compatibility of 0.043% and 13% for a (3+1) and a (3+2) model, respectively. While the (3+3) fit yields the highest quality overall, it still finds inconsistencies with the MiniBooNE appearance data sets; in particular, the global fit fails to account for the observed MiniBooNE low-energy excess. Given the overall improvement, we recommend using the results of (3+2) and (3+3) fits, rather than (3+1) fits, for future neutrino oscillation phenomenology. These results motivate the pursuit of further short baseline experiments, such as those reviewed in this paper.Comment: Submitted to Advances in High Energy Physics Special Issue on Neutrino Physic

    Strategies for estimating category frequency: Effects of abstractness and distinctiveness

    Get PDF
    We all divide our worlds into categories. However, our mental categories may not exactly correspond to those in which researchers are interested. Under these circumstances, data quality seems likely to suffer. On
    corecore