2,203 research outputs found
A Bayesian Networks Approach to Operational Risk
A system for Operational Risk management based on the computational paradigm
of Bayesian Networks is presented. The algorithm allows the construction of a
Bayesian Network targeted for each bank using only internal loss data, and
takes into account in a simple and realistic way the correlations among
different processes of the bank. The internal losses are averaged over a
variable time horizon, so that the correlations at different times are removed,
while the correlations at the same time are kept: the averaged losses are thus
suitable to perform the learning of the network topology and parameters. The
algorithm has been validated on synthetic time series. It should be stressed
that the practical implementation of the proposed algorithm has a small impact
on the organizational structure of a bank and requires an investment in human
resources limited to the computational area
Search for spontaneous muon emission from lead nuclei
We describe a possible search for muonic radioactivity from lead nuclei using
the base elements ("bricks" composed by lead and nuclear emulsion sheets) of
the long-baseline OPERA neutrino experiment. We present the results of a Monte
Carlo simulation concerning the expected event topologies and estimates of the
background events. Using few bricks, we could reach a good sensitivity level.Comment: 12 pages, 4 figure
Quantum critical point in a periodic Anderson model
We investigate the symmetric Periodic Anderson Model (PAM) on a
three-dimensional cubic lattice with nearest-neighbor hopping and hybridization
matrix elements. Using Gutzwiller's variational method and the Hubbard-III
approximation (which corresponds to the exact solution of an appropriate
Falicov-Kimball model in infinite dimensions) we demonstrate the existence of a
quantum critical point at zero temperature. Below a critical value of the
hybridization (or above a critical interaction ) the system is an {\em
insulator} in Gutzwiller's and a {\em semi-metal} in Hubbard's approach,
whereas above (below ) it behaves like a metal in both
approximations. These predictions are compared with the density of states of
the - and -bands calculated from Quantum Monte Carlo and NRG
calculations. Our conclusion is that the half-filled symmetric PAM contains a
{\em metal-semimetal transition}, not a metal-insulator transition as has been
suggested previously.Comment: ReVteX, 10 pages, 2 EPS figures. Minor corrections made in the text
and in the figure captions from the first version. More references added.
Accepted for publication in Physical Review
Electron/pion separation with an Emulsion Cloud Chamber by using a Neural Network
We have studied the performance of a new algorithm for electron/pion
separation in an Emulsion Cloud Chamber (ECC) made of lead and nuclear emulsion
films. The software for separation consists of two parts: a shower
reconstruction algorithm and a Neural Network that assigns to each
reconstructed shower the probability to be an electron or a pion. The
performance has been studied for the ECC of the OPERA experiment [1].
The separation algorithm has been optimized by using a detailed Monte
Carlo simulation of the ECC and tested on real data taken at CERN (pion beams)
and at DESY (electron beams). The algorithm allows to achieve a 90% electron
identification efficiency with a pion misidentification smaller than 1% for
energies higher than 2 GeV
The cosmic-ray electron flux measured by the PAMELA experiment between 1 and 625 GeV
Precision measurements of the electron component in the cosmic radiation
provide important information about the origin and propagation of cosmic rays
in the Galaxy. Here we present new results regarding negatively charged
electrons between 1 and 625 GeV performed by the satellite-borne experiment
PAMELA. This is the first time that cosmic-ray electrons have been identified
above 50 GeV. The electron spectrum can be described with a single power law
energy dependence with spectral index -3.18 +- 0.05 above the energy region
influenced by the solar wind (> 30 GeV). No significant spectral features are
observed and the data can be interpreted in terms of conventional diffusive
propagation models. However, the data are also consistent with models including
new cosmic-ray sources that could explain the rise in the positron fraction.Comment: 11 pages, 3 figures, accepted for publication in PR
PAMELA results on the cosmic-ray antiproton flux from 60 MeV to 180 GeV in kinetic energy
The satellite-borne experiment PAMELA has been used to make a new measurement
of the cosmic-ray antiproton flux and the antiproton-to-proton flux ratio which
extends previously published measurements down to 60 MeV and up to 180 GeV in
kinetic energy. During 850 days of data acquisition approximately 1500
antiprotons were observed. The measurements are consistent with purely
secondary production of antiprotons in the galaxy. More precise secondary
production models are required for a complete interpretation of the results.Comment: 11 pages, 3 figures, 1 table. Accepted for publication in Physical
Review Letter
Scaling relation for determining the critical threshold for continuum percolation of overlapping discs of two sizes
We study continuum percolation of overlapping circular discs of two sizes. We
propose a phenomenological scaling equation for the increase in the effective
size of the larger discs due to the presence of the smaller discs. The critical
percolation threshold as a function of the ratio of sizes of discs, for
different values of the relative areal densities of two discs, can be described
in terms of a scaling function of only one variable. The recent accurate Monte
Carlo estimates of critical threshold by Quintanilla and Ziff [Phys. Rev. E, 76
051115 (2007)] are in very good agreement with the proposed scaling relation.Comment: 4 pages, 3 figure
The periodic Anderson model from the atomic limit and FeSi
The exact Green's functions of the periodic Anderson model for
are formally expressed within the cumulant expansion in terms of an effective
cumulant. Here we resort to a calculation in which this quantity is
approximated by the value it takes for the exactly soluble atomic limit of the
same model. In the Kondo region a spectral density is obtained that shows near
the Fermi surface a structure with the properties of the Kondo peak.
Approximate expressions are obtained for the static conductivity
and magnetic susceptibility of the PAM, and they are employed to fit
the experimental values of FeSi, a compound that behaves like a Kondo insulator
with both quantities vanishing rapidly for . Assuming that the system
is in the intermediate valence region, it was possible to find good agreement
between theory and experiment for these two properties by employing the same
set of parameters. It is shown that in the present model the hybridization is
responsible for the relaxation mechanism of the conduction electrons.Comment: 26 pages and 8 figure
- …
