636 research outputs found
Wintertime thermal performance of green façades in a mediterranean climate
The increasing environmental issues have afforded opportunities for a widespread application of green systems in urban areas. Greening the building with green roofs and vertical green systems can be a design and retrofitting strategy to improve building energy performance in summer and in winter. Research efforts have been mainly concentrated on their energy saving function during warm periods. Green façades have a great application potential thanks to the space available in urban environment. The effect of green façades on building energy performance has been studied mainly for warm periods. In order to evaluate the effect during cold periods, an experiment was conducted in Bari, Italy, for two years. Pandorea jasminoides variegated and Rhyncospermum jasminoides were tested as evergreen climbing plants on walls; a third wall was used as control. The night-time temperature of the covered wall was higher than the uncovered wall temperature by up to 3.5°C, thanks to the presence of plants. The thermal barrier function performed by the vegetation layer was analysed. The influence of outdoor air temperature, relative humidity and wind velocity on the façades thermal effect during night-time was investigated. The experimental test demonstrated that both Pandorea jasminoides variegated and Rhyncospermum jasminoides are suitable for green façades in the Mediterranean climatic area during winter. The use of the green façades allowed increasing the thermal performance of the walls during night-time. They also reduced the surface temperature changes throughout the day
A nature-based system for improving Mediterranean buildings’ performance: contribution to energy saving by heat transfer reduction and influence of climatic parameters
Urban environments can be turned greener and more sustainable by letting in vegetation. Applying green facades on buildings’ vertical surfaces is a viable option that brings various advantages. This study focuses on the energy benefit provided by an evergreen green facade in Mediterranean climate conditions. The results came from a long experimental campaign, heat fluxes evaluation, and statistical analyses. The thermal behaviour of the experimental green facade was analysed all year round, highlighting differences between warm and cold periods and the time of the day. The main advantage was assessed in terms of energy saving, defined as heat flux reduction through the wall covered with vegetation compared to an unvegetated wall. The study pointed out that energy saving was achieved throughout the year, but at different times of the day based on the season. A daytime energy saving was obtained in warm periods due to the shading effect and the plants’ evapotranspiration. A night-time benefit was reached in cold periods mainly thanks to the green layer’s thermal and wind barrier action. The results showed daily mean energy saving values equal to 11.47 W m-2 for a warm period and 3.23 W m-2 for a cold period. The statistical analysis highlighted that the energy saving was positively influenced by external air temperature, especially in the daytime. Overall, higher energy saving was provided by the green facade when higher external air temperature values were recorded. This research contributes to filling existing literature gaps on the yearly behaviour of green facades and on the energy benefits these provide. use only
Greenhouse localized heating powered by a polygeneration system
Energy consumption in greenhouse heating could reach up to 90% of the total energy requirement depending on the type of greenhouse, environmental control equipment and location of the greenhouse. The use of climate conditioning technologies that exploit renewable energy and the application of passive systems to improve the energy efficiency and the sustainability of the greenhouse sector are recommended. During winter 2020-2021, an experimental test was carried out at the University of Bari in a Mediterranean greenhouse heated by a polygeneration system, composed of a solar system and an air-water heat pump. Three localized heating systems were tested to transfer thermal energy close to plants of Roman lettuce. Heating pipes were placed inside the cultivation substrate in the underground pipe system and on the cultivation substrate in the laid pipe system. The third system consists of metal plates heated by steel tubes and placed in the aerial area of plants. A weather climatic station and a sensor system interfaced with a data logger for continuous data acquisition and storage were used. The plate system was the best for air temperature rising, as it allowed an increase of 3.6% compared to the set-up without any localised heating system. The underground pipe system was the best for the soil heating, as it achieved a temperature increase of 92%. Localized soil heating systems contributed significantly to an earlier harvest by almost 2 weeks
Human Versus Machine: A Comparative Analysis in Detecting Artificial Intelligence-Generated Images
This article delves into the intricate process of artificial intelligence-generated content detection, shedding light on automated detectors' challenges and revealing human detection biases, strengths, and weaknesses
Inflammatory Related Reactions in Humans and in Canine Breast Cancers, A Spontaneous Animal Model of Disease
Inflammatory cells are emerging markers in various cancers in human trials. The relationship between the inflammatory cells response, cancer grade, and progression has been investigated experimentally in a spontaneous canine model of breast cancer and in the unselected population (18–64 years.o.) under anti-HER2 treatments that represent the most prevalent population in this cancer type. The canine data (N samples = 101) were collected retrospectively for diagnosis in our regional area and evaluated by immunohistochemistry and haemato-chemistry. The inflammatory and immune-related adverse reactions (ADR) in humans were evaluated using EudraVigilance. The “Proportional Reporting Ratio” (PRR) of the mabs was calculated for each ADR with values >2 indicative of high risk. In dogs, we found elevated immunostaining of CD68-macrophages in the lymph node of the aggressive cancer G3 and infiltrating CD20+-lymphocyte. A high density of CD20 + lymphocytes was observed in G1 and a decrease in the density was observed with the histological degree of the tumors. The animals with the sample in G1 showed reduced serum platelet and neutrophil count and elevated lymphocytes and the opposite in severely affected animals. Inflammatory reactions with edema, skin reactions, extravasation, loss of effectiveness, and platelet count decrease (PRR > 13) were found with trastuzumab emtansine in humans, in the absence of immune system reactions. Trastuzumab i.v.-s.c. showed immune system reactions, loss of effectiveness, intolerances with drug withdrawal, technological issues (PRR > 7), and neutrophil count decrease reports. These reactions were less frequently reported for pertuzumab i.v. Case reports of platelet and neutrophil count decrease were not associated with disease progression with a better outcome in humans as in canine breast cancer. Therefore, infiltrating CD68-macrophages are associated with G3, while infiltrating CD20+ and elevated serum lymphocytes in parallel with reduced platelet and neutrophil count play a favorable role in human and canine breast cancer
Common ground in collaborative intelligence analysis: an empirical study
This paper reports an empirical exploration of how different configurations of collaboration technology affect peoples’ ability to construct and maintain common ground while conducting collaborative intelligence analysis work. Prior studies of collaboration technology have typically focused on simpler conversational tasks, or ones that involve physical manipulation, rather than the complex sensemaking and inference involved in intelligence work. The study explores the effects of video communication and shared visual workspace (SVW) on the negotiation of common ground by distributed teams collaborating in real time on intelligence analysis tasks. The experimental study uses a 2x2 factorial, between-subjects design involving two independent variables: presence or absence of Video and SVW. Two-member teams were randomly assigned to one of the four experimental media conditions and worked to complete several intelligence analysis tasks involving multiple, complex intelligence artefacts. Teams with access to the shared visual workspace could view their teammates’ eWhiteboards. Our results demonstrate a significant effect for the shared visual workspace: the effort of conversational grounding is reduced in the cases where SVW is available. However, there were no main effects for video and no interaction between the two variables. Also, we found that the “conversational grounding effort” required tended to decrease over the course of the tas
The genetic background and vitamin D supplementation can affect irisin levels in Prader–Willi syndrome
Background Prader–Willi syndrome (PWS) is associated to distinctive clinical symptoms, including obesity, cognitive and behavioral disorders, and bone impairment. Irisin is a myokine that acts on several target organs including brain adipose tissue and bone. The present study was finalized to explore circulating levels of irisin in children and adult PWS patients.
Methods Seventy-eight subjects with PWS, 26 children (15 females, mean age 9.48 ± 3.6 years) and 52 adults (30 females, mean age 30.6 ± 10.7) were enrolled. Irisin serum levels were measured in patients and controls. Its levels were related with anthropometric and metabolic parameters, cognitive performance and bone mineral density either in pediatric or adult PWS. Multiple regression analysis was also performed.
Results Irisin serum levels in PWS patients did not show different compared with controls. A more in-depth analysis showed that both pediatric and adult PWS with DEL15 displayed significantly reduced irisin levels compared to controls. Otherwise, no differences in irisin concentration were found in UPD15 patients with respect to controls. Our study revealed that in pediatric PWS the 25(OH) vitamin-D levels affected irisin serum concentration. Indeed, patients who were not supplemented with vitamin D showed lower irisin levels than controls and patients performing the supplementation. Multiple regression analysis showed that irisin levels in pediatric and adult PWS were predicted by the genetic background and 25(OH)-vitamin D levels, whereas in a group of 29 adult PWS also by intelligent Quotient.
Conclusion We demonstrated the possible role of genetic background and vitamin-D supplementation on irisin serum levels in PWS patients
Human–agent collaboration for disaster response
In the aftermath of major disasters, first responders are typically overwhelmed with large numbers of, spatially distributed, search and rescue tasks, each with their own requirements. Moreover, responders have to operate in highly uncertain and dynamic environments where new tasks may appear and hazards may be spreading across the disaster space. Hence, rescue missions may need to be re-planned as new information comes in, tasks are completed, or new hazards are discovered. Finding an optimal allocation of resources to complete all the tasks is a major computational challenge. In this paper, we use decision theoretic techniques to solve the task allocation problem posed by emergency response planning and then deploy our solution as part of an agent-based planning tool in real-world field trials. By so doing, we are able to study the interactional issues that arise when humans are guided by an agent. Specifically, we develop an algorithm, based on a multi-agent Markov decision process representation of the task allocation problem and show that it outperforms standard baseline solutions. We then integrate the algorithm into a planning agent that responds to requests for tasks from participants in a mixed-reality location-based game, called AtomicOrchid, that simulates disaster response settings in the real-world. We then run a number of trials of our planning agent and compare it against a purely human driven system. Our analysis of these trials show that human commanders adapt to the planning agent by taking on a more supervisory role and that, by providing humans with the flexibility of requesting plans from the agent, allows them to perform more tasks more efficiently than using purely human interactions to allocate tasks. We also discuss how such flexibility could lead to poor performance if left unchecked
Evidence for Increased Beta-Adrenoreceptor Responsiveness Induced by 14 Days of Simulated Microgravity in Humans
We studied hemodynamic responses to alpha and beta receptor agonists in 8 healthy men ( 38+- 2 yrs) before and after 14 days of 6 degree head-down tilt (HDT) to test the hypothesis that increased adrenergic responsiveness is induced by prolonged exposure to microgravity. Immediately following a 30-min baseline period, a steady-state infusion of isoproterenol (ISO) was used to assess beta 1- and beta 2-adrenergic responsiveness. ISO was infused at three graded constant rates of 0.005, 0.01 and 0.02 ug/kg/min. After heart rate and blood pressure had been allowed to return to baseline levels following ISO infusion graded infusion of phenylephrine (PE) was used to assess responsiveness of alpha I-vascular receptors. PE was infused at three graded constant rates of 0.25, 0.50 and 1.00 ug/kg/min. Each infusion interval for both drugs was 9 min. During the infusions, constant monitoring of beat-to-beat blood pressure and heart rate was performed and leg blood flow was measured with occlusion plethysmography at each infusion level. The slopes calculated from linear regressions between ISO and PE doses and changes in heart rate, blood pressure, and leg vascular resistance for each subject were used to represent alpha- and beta- adrenoreceptor responsiveness. Fourteen days HDT increased the slopes of heart rate (1056 +- 107 to 1553 +- 83 beats/ug/kg/min; P= 0.014) and vasodilation (-469ft +- 111 to -l446 +- 309 PRU/ug/kg/min; P =0.0224) to ISO infusion. There was no alteration in blood pressure or vascular resistance responses to PE infusion after HDT. Our results provide evidence that microgravity causes selective increases in beta 1- and beta 2-adrenergic responsiveness without affecting alpha 1-vascular responses
- …
