7,345 research outputs found

    Jet energy loss and high pTp_T photon production in hot quark-gluon plasma

    Full text link
    Jet-quenching and photon production at high transverse momentum are studied at RHIC energies, together with the correlation between jets and photons. The energy loss of hard partons traversing the hot QGP is evaluated in the AMY formalism, consistently taking into account both induced gluon emission and elastic collisions. The production of high pTp_T photons in Au+Au collisions is calculated, incorporating a complete set of photon-production channels. Putting all these ingredients together with a (3+1)-dimensional ideal relativistic hydrodynamical description of the thermal medium, we achieve a good description of the current experimental data. Our results illustrate that the interaction between hard jets and the soft medium is important for a complete understanding of jet quenching, photon production, and photon-hadron correlations in relativistic nuclear collisions.Comment: 4 pages, 4 figures - To appear in the conference proceedings for Quark Matter 2009, March 30 - April 4, Knoxville, Tennesse

    Pion and Quark Annihilation Mechanisms of Dilepton Production in Relativistic Heavy-Ion Collisions

    Full text link
    We revise the pion-pion and quark-quark annihilation mechanisms of dilepton production during relativistic heavy-ion collisions. We focus on the modifications caused by the specific features of intramedium pion states rather than by medium modification of the rho-meson spectral density. The main ingredient emerging in our approach is a form-factor of the multi-pion (multi-quark) system. Replacing the usual delta-function the form-factor plays the role of distribution which, in some sense, "connects" the 4-momenta of the annihilating and outgoing particles. The difference between the c.m.s. velocities attributed to annihilating and outgoing particles is a particular consequence of this replacement and results in the appearance of a new factor in the formula for the dilepton production rate. We obtained that the form-factor of the multi-pion (multi-quark) system causes broadening of the rate which is most pronounced for small invariant masses, in particular, we obtain a growth of the rate for the invariant masses below two masses of the annihilating particles.Comment: 6 pages, 6 figures, LaTex; to appear in Mod. Phys. Lett.

    Signal-Jamming in a Sequential Auction

    Get PDF
    In a recurring auction early bids may reveal bidders’ types, which in turn affects bidding in later auctions. Bidders take this into account and may bid in a way that conceals their private information until the last auction is played. The present paper analyzes the equilibrium of a sequence of ?rst-price auctions assuming bidders have stable private values. We show that signal-jamming occurs and explore the dynamics of equilibrium prices

    CONCENTRATION ISSUES IN THE U.S. BEEF SUBSECTOR

    Get PDF
    Industrial Organization, Livestock Production/Industries,

    Modeling Stable Matching Problems with Answer Set Programming

    Get PDF
    The Stable Marriage Problem (SMP) is a well-known matching problem first introduced and solved by Gale and Shapley (1962). Several variants and extensions to this problem have since been investigated to cover a wider set of applications. Each time a new variant is considered, however, a new algorithm needs to be developed and implemented. As an alternative, in this paper we propose an encoding of the SMP using Answer Set Programming (ASP). Our encoding can easily be extended and adapted to the needs of specific applications. As an illustration we show how stable matchings can be found when individuals may designate unacceptable partners and ties between preferences are allowed. Subsequently, we show how our ASP based encoding naturally allows us to select specific stable matchings which are optimal according to a given criterion. Each time, we can rely on generic and efficient off-the-shelf answer set solvers to find (optimal) stable matchings.Comment: 26 page

    Neutrino emission in neutron matter from magnetic moment interactions

    Full text link
    Neutrino emission drives neutron star cooling for the first several hundreds of years after its birth. Given the low energy (\sim keV) nature of this process, one expects very few nonstandard particle physics contributions which could affect this rate. Requiring that any new physics contributions involve light degrees of freedom, one of the likely candidates which can affect the cooling process would be a nonzero magnetic moment for the neutrino. To illustrate, we compute the emission rate for neutrino pair bremsstrahlung in neutron-neutron scattering through photon-neutrino magnetic moment coupling. We also present analogous differential rates for neutrino scattering off nucleons and electrons that determine neutrino opacities in supernovae. Employing current upper bounds from collider experiments on the tau magnetic moment, we find that the neutrino emission rate can exceed the rate through neutral current electroweak interaction by a factor two, signalling the importance of new particle physics input to a standard calculation of relevance to neutron star cooling. However, astrophysical bounds on the neutrino magnetic moment imply smaller effects.Comment: 9 pages, 1 figur

    Neutrons from multiplicity-selected Au-Au collisions at 150, 250, 400, and 650 AMeV

    Full text link
    We measured neutron triple-differential cross sections from multiplicity-selected Au-Au collisions at 150, 250, 400, and 650 \AMeV. The reaction plane for each collision was estimated from the summed transverse velocity vector of the charged fragments emitted in the collision. We examined the azimuthal distribution of the triple-differential cross sections as a function of the polar angle and the neutron rapidity. We extracted the average in--plane transverse momentum Px\langle P_x\rangle and the normalized observable Px/P\langle P_x/P_\perp\rangle, where PP_\perp is the neutron transverse momentum, as a function of the neutron center-of-mass rapidity, and we examined the dependence of these observables on beam energy. These collective flow observables for neutrons, which are consistent with those of protons plus bound nucleons from the Plastic Ball Group, agree with the Boltzmann--Uehling--Uhlenbeck (BUU) calculations with a momentum--dependent interaction. Also, we calculated the polar-angle-integrated maximum azimuthal anisotropy ratio R from the value of Px/P\langle P_x/P_\perp\rangle.Comment: 20 LaTeX pages. 11 figures to be faxed on request, send email to sender's addres

    Maximum Azimuthal Anisotropy of Neutrons from Nb-Nb Collisions at 400 AMeV and the Nuclear Equation of State

    Get PDF
    We measured the first azimuthal distributions of triple--differential cross sections of neutrons emitted in heavy-ion collisions, and compared their maximum azimuthal anisotropy ratios with Boltzmann--Uehling--Uhlenbeck (BUU) calculations with a momentum-dependent interaction. The BUU calculations agree with the triple- and double-differential cross sections for positive rapidity neutrons emitted at polar angles from 7 to 27 degrees; however, the maximum azimuthal anisotropy ratio for these free neutrons is insensitive to the size of the nuclear incompressibility modulus K characterizing the nuclear matter equation of state.Comment: Typeset using ReVTeX, with 3 ps figs., uuencoded and appende

    Bremsstrahlung neutrinos from electron-electron scattering in a relativistic degenerate electron plasma

    Full text link
    We present a calculation of neutrino pair bremsstrahlung due to electron-electron scattering in a relativistic degenerate plasma of electrons. Proper treatment of the in-medium photon propagator, i.e., inclusion of Debye screening of the longitudinal part and Landau damping of the transverse part, leads to a neutrino emissivity which is several orders of magnitude larger than when Debye screening is imposed for the tranverse part. Our results show that this in-medium process can compete with other sources of neutrino radiation and can, in some cases, even be the dominant neutrino emission mechanism. We also discuss the natural extension to quark-quark bremsstrahlung in gapped and ungapped quark matter.Comment: 15 pages, 7 figure
    corecore