7,345 research outputs found
Jet energy loss and high photon production in hot quark-gluon plasma
Jet-quenching and photon production at high transverse momentum are studied
at RHIC energies, together with the correlation between jets and photons. The
energy loss of hard partons traversing the hot QGP is evaluated in the AMY
formalism, consistently taking into account both induced gluon emission and
elastic collisions. The production of high photons in Au+Au collisions is
calculated, incorporating a complete set of photon-production channels. Putting
all these ingredients together with a (3+1)-dimensional ideal relativistic
hydrodynamical description of the thermal medium, we achieve a good description
of the current experimental data. Our results illustrate that the interaction
between hard jets and the soft medium is important for a complete understanding
of jet quenching, photon production, and photon-hadron correlations in
relativistic nuclear collisions.Comment: 4 pages, 4 figures - To appear in the conference proceedings for
Quark Matter 2009, March 30 - April 4, Knoxville, Tennesse
Pion and Quark Annihilation Mechanisms of Dilepton Production in Relativistic Heavy-Ion Collisions
We revise the pion-pion and quark-quark annihilation mechanisms of dilepton
production during relativistic heavy-ion collisions. We focus on the
modifications caused by the specific features of intramedium pion states rather
than by medium modification of the rho-meson spectral density. The main
ingredient emerging in our approach is a form-factor of the multi-pion
(multi-quark) system. Replacing the usual delta-function the form-factor plays
the role of distribution which, in some sense, "connects" the 4-momenta of the
annihilating and outgoing particles. The difference between the c.m.s.
velocities attributed to annihilating and outgoing particles is a particular
consequence of this replacement and results in the appearance of a new factor
in the formula for the dilepton production rate. We obtained that the
form-factor of the multi-pion (multi-quark) system causes broadening of the
rate which is most pronounced for small invariant masses, in particular, we
obtain a growth of the rate for the invariant masses below two masses of the
annihilating particles.Comment: 6 pages, 6 figures, LaTex; to appear in Mod. Phys. Lett.
Signal-Jamming in a Sequential Auction
In a recurring auction early bids may reveal bidders’ types, which in turn affects bidding in later auctions. Bidders take this into account and may bid in a way that conceals their private information until the last auction is played. The present paper analyzes the equilibrium of a sequence of ?rst-price auctions assuming bidders have stable private values. We show that signal-jamming occurs and explore the dynamics of equilibrium prices
CONCENTRATION ISSUES IN THE U.S. BEEF SUBSECTOR
Industrial Organization, Livestock Production/Industries,
Modeling Stable Matching Problems with Answer Set Programming
The Stable Marriage Problem (SMP) is a well-known matching problem first
introduced and solved by Gale and Shapley (1962). Several variants and
extensions to this problem have since been investigated to cover a wider set of
applications. Each time a new variant is considered, however, a new algorithm
needs to be developed and implemented. As an alternative, in this paper we
propose an encoding of the SMP using Answer Set Programming (ASP). Our encoding
can easily be extended and adapted to the needs of specific applications. As an
illustration we show how stable matchings can be found when individuals may
designate unacceptable partners and ties between preferences are allowed.
Subsequently, we show how our ASP based encoding naturally allows us to select
specific stable matchings which are optimal according to a given criterion.
Each time, we can rely on generic and efficient off-the-shelf answer set
solvers to find (optimal) stable matchings.Comment: 26 page
Neutrino emission in neutron matter from magnetic moment interactions
Neutrino emission drives neutron star cooling for the first several hundreds
of years after its birth. Given the low energy ( keV) nature of this
process, one expects very few nonstandard particle physics contributions which
could affect this rate. Requiring that any new physics contributions involve
light degrees of freedom, one of the likely candidates which can affect the
cooling process would be a nonzero magnetic moment for the neutrino. To
illustrate, we compute the emission rate for neutrino pair bremsstrahlung in
neutron-neutron scattering through photon-neutrino magnetic moment coupling. We
also present analogous differential rates for neutrino scattering off nucleons
and electrons that determine neutrino opacities in supernovae. Employing
current upper bounds from collider experiments on the tau magnetic moment, we
find that the neutrino emission rate can exceed the rate through neutral
current electroweak interaction by a factor two, signalling the importance of
new particle physics input to a standard calculation of relevance to neutron
star cooling. However, astrophysical bounds on the neutrino magnetic moment
imply smaller effects.Comment: 9 pages, 1 figur
Neutrons from multiplicity-selected Au-Au collisions at 150, 250, 400, and 650 AMeV
We measured neutron triple-differential cross sections from
multiplicity-selected Au-Au collisions at 150, 250, 400, and 650 \AMeV. The
reaction plane for each collision was estimated from the summed transverse
velocity vector of the charged fragments emitted in the collision. We examined
the azimuthal distribution of the triple-differential cross sections as a
function of the polar angle and the neutron rapidity. We extracted the average
in--plane transverse momentum and the normalized
observable , where is the neutron
transverse momentum, as a function of the neutron center-of-mass rapidity, and
we examined the dependence of these observables on beam energy. These
collective flow observables for neutrons, which are consistent with those of
protons plus bound nucleons from the Plastic Ball Group, agree with the
Boltzmann--Uehling--Uhlenbeck (BUU) calculations with a momentum--dependent
interaction. Also, we calculated the polar-angle-integrated maximum azimuthal
anisotropy ratio R from the value of .Comment: 20 LaTeX pages. 11 figures to be faxed on request, send email to
sender's addres
Maximum Azimuthal Anisotropy of Neutrons from Nb-Nb Collisions at 400 AMeV and the Nuclear Equation of State
We measured the first azimuthal distributions of triple--differential cross
sections of neutrons emitted in heavy-ion collisions, and compared their
maximum azimuthal anisotropy ratios with Boltzmann--Uehling--Uhlenbeck (BUU)
calculations with a momentum-dependent interaction. The BUU calculations agree
with the triple- and double-differential cross sections for positive rapidity
neutrons emitted at polar angles from 7 to 27 degrees; however, the maximum
azimuthal anisotropy ratio for these free neutrons is insensitive to the size
of the nuclear incompressibility modulus K characterizing the nuclear matter
equation of state.Comment: Typeset using ReVTeX, with 3 ps figs., uuencoded and appende
Bremsstrahlung neutrinos from electron-electron scattering in a relativistic degenerate electron plasma
We present a calculation of neutrino pair bremsstrahlung due to
electron-electron scattering in a relativistic degenerate plasma of electrons.
Proper treatment of the in-medium photon propagator, i.e., inclusion of Debye
screening of the longitudinal part and Landau damping of the transverse part,
leads to a neutrino emissivity which is several orders of magnitude larger than
when Debye screening is imposed for the tranverse part. Our results show that
this in-medium process can compete with other sources of neutrino radiation and
can, in some cases, even be the dominant neutrino emission mechanism. We also
discuss the natural extension to quark-quark bremsstrahlung in gapped and
ungapped quark matter.Comment: 15 pages, 7 figure
- …
