18,800,531 research outputs found
Pion-kaon correlations in central Au+Au collisions at sqrt[sNN]=130 GeV
Pion-kaon correlation functions are constructed from central Au+Au STAR data taken at sqrt[sNN]=130 GeV by the STAR detector at the Relativistic Heavy Ion Collider (RHIC). The results suggest that pions and kaons are not emitted at the same average space-time point. Space-momentum correlations, i.e., transverse flow, lead to a space-time emission asymmetry of pions and kaons that is consistent with the data. This result provides new independent evidence that the system created at RHIC undergoes a collective transverse expansion.alle Autoren: J. Adams, C. Adler, M. M. Aggarwal, Z. Ahammed, J. Amonett, B. D. Anderson, M. Anderson, D. Arkhipkin, G. S. Averichev, S. K. Badyal, J. Balewski, O. Barannikova, L. S. Barnby, J. Baudot, S. Bekele, V. V. Belaga, R. Bellwied, J. Berger, B. I. Bezverkhny, S. Bhardwaj, P. Bhaskar, A. K. Bhati, H. Bichsel, A. Billmeier, L. C. Bland, C. O. Blyth, B. E. Bonner, M. Botje, A. Boucham, A. Brandin, A. Bravar, R. V. Cadman, X. Z. Cai, H. Caines, M. Calderón de la Barca Sánchez, J. Carroll, J. Castillo, M. Castro, D. Cebra, P. Chaloupka, S. Chattopadhyay, H. F. Chen, Y. Chen, S. P. Chernenko, M. Cherney, A. Chikanian, B. Choi, W. Christie, J. P. Coffin, T. M. Cormier, J. G. Cramer, H. J. Crawford, D. Das, S. Das, A. A. Derevschikov, L. Didenko, T. Dietel, X. Dong, J. E. Draper, F. Du, A. K. Dubey, V. B. Dunin, J. C. Dunlop, M. R. Dutta Majumdar, V. Eckardt, L. G. Efimov, V. Emelianov, J. Engelage, G. Eppley, B. Erazmus, P. Fachini, V. Faine, J. Faivre, R. Fatemi, K. Filimonov, P. Filip, E. Finch, Y. Fisyak, D. Flierl, K. J. Foley, J. Fu, C. A. Gagliardi, M. S. Ganti, T. D. Gutierrez, N. Gagunashvili, J. Gans, L. Gaudichet, M. Germain, F. Geurts, V. Ghazikhanian, P. Ghosh, J. E. Gonzalez, O. Grachov, V. Grigoriev, S. Gronstal, D. Grosnick, M. Guedon, S. M. Guertin, A. Gupta, E. Gushin, T. J. Hallman, D. Hardtke, J. W. Harris, M. Heinz, T. W. Henry, S. Heppelmann, T. Herston, B. Hippolyte, A. Hirsch, E. Hjort, G. W. Hoffmann, M. Horsley, H. Z. Huang, S. L. Huang, T. J. Humanic, G. Igo, A. Ishihara, P. Jacobs, W. W. Jacobs, M. Janik, I. Johnson, P. G. Jones, E. G. Judd, S. Kabana, M. Kaneta, M. Kaplan, D. Keane, J. Kiryluk, A. Kisiel, J. Klay, S. R. Klein, A. Klyachko, D. D. Koetke, T. Kollegger, A. S. Konstantinov, M. Kopytine, L. Kotchenda, A. D. Kovalenko, M. Kramer, P. Kravtsov, K. Krueger, C. Kuhn, A. I. Kulikov, A. Kumar, G. J. Kunde, C. L. Kunz, R. Kh. Kutuev, A. A. Kuznetsov, M. A. C. Lamont, J. M. Landgraf, S. Lange, C. P. Lansdell, B. Lasiuk, F. Laue, J. Lauret, A. Lebedev, R. Lednický, V. M. Leontiev, M. J. LeVine, C. Li, Q. Li, S. J. Lindenbaum, M. A. Lisa, F. Liu, L. Liu, Z. Liu, Q. J. Liu, T. Ljubicic, W. J. Llope, H. Long, R. S. Longacre, M. Lopez-Noriega, W. A. Love, T. Ludlam, D. Lynn, J. Ma, Y. G. Ma, D. Magestro, S. Mahajan, L. K. Mangotra, D. P. Mahapatra, R. Majka, R. Manweiler, S. Margetis, C. Markert, L. Martin, J. Marx, H. S. Matis, Yu. A. Matulenko, T. S. McShane, F. Meissner, Yu. Melnick, A. Meschanin, M. Messer, M. L. Miller, Z. Milosevich, N. G. Minaev, C. Mironov, D. Mishra, J. Mitchell, B. Mohanty, L. Molnar, C. F. Moore, M. J. Mora-Corral, V. Morozov, M. M. de Moura, M. G. Munhoz, B. K. Nandi, S. K. Nayak, T. K. Nayak, J. M. Nelson, P. Nevski, V. A. Nikitin, L. V. Nogach, B. Norman, S. B. Nurushev, G. Odyniec, A. Ogawa, V. Okorokov, M. Oldenburg, D. Olson, G. Paic, S. U. Pandey, S. K. Pal, Y. Panebratsev, S. Y. Panitkin, A. I. Pavlinov, T. Pawlak, V. Perevoztchikov, W. Peryt, V. A. Petrov, S. C. Phatak, R. Picha, M. Planinic, J. Pluta, N. Porile, J. Porter, A. M. Poskanzer, M. Potekhin, E. Potrebenikova, B. V. K. S. Potukuchi, D. Prindle, C. Pruneau, J. Putschke, G. Rai, G. Rakness, R. Raniwala, S. Raniwala, O. Ravel, R. L. Ray, S. V. Razin, D. Reichhold, J. G. Reid, G. Renault, F. Retiere, A. Ridiger, H. G. Ritter, J. B. Roberts, O. V. Rogachevski, J. L. Romero, A. Rose, C. Roy, L. J. Ruan, V. Rykov, R. Sahoo, I. Sakrejda, S. Salur, J. Sandweiss, I. Savin, J. Schambach, R. P. Scharenberg, N. Schmitz, L. S. Schroeder, K. Schweda, J. Seger, D. Seliverstov, P. Seyboth, E. Shahaliev, M. Shao, M. Sharma, K. E. Shestermanov, S. S. Shimanskii, R. N. Singaraju, F. Simon, G. Skoro, N. Smirnov, R. Snellings, G. Sood, P. Sorensen, J. Sowinski, H. M. Spinka, B. Srivastava, S. Stanislaus, R. Stock, A. Stolpovsky, M. Strikhanov, B. Stringfellow, C. Struck, A. A. P. Suaide, E. Sugarbaker, C. Suire, M. Šumbera, B. Surrow, T. J. M. Symons, A. Szanto de Toledo, P. Szarwas, A. Tai, J. Takahashi, A. H. Tang, D. Thein, J. H. Thomas, V. Tikhomirov, M. Tokarev, M. B. Tonjes, T. A. Trainor, S. Trentalange, R. E. Tribble, M. D. Trivedi, V. Trofimov, O. Tsai, T. Ullrich, D. G. Underwood, G. Van Buren, A. M. VanderMolen, A. N. Vasiliev, M. Vasiliev, S. E. Vigdor, Y. P. Viyogi, S. A. Voloshin, W. Waggoner, F. Wang, G. Wang, X. L. Wang, Z. M. Wang, H. Ward, J. W. Watson, R. Wells, G. D. Westfall, C. Whitten, Jr., H. Wieman, R. Willson, S. W. Wissink, R. Witt, J. Wood, J. Wu, N. Xu, Z. Xu, Z. Z. Xu, A. E. Yakutin, E. Yamamoto, J. Yang, P. Yepes, V. I. Yurevich, Y. V. Zanevski, I. Zborovský, H. Zhang, H. Y. Zhang, W. M. Zhang, Z. P. Zhang, P. A. Żołnierczuk, R. Zoulkarneev, J. Zoulkarneeva, and A. N. Zubarev (STAR Collaboration
Volume form on moduli spaces of d-differentials
Given , , and an integral vector
such that and , let
denote the moduli space of meromorphic
-differentials on Riemann surfaces of genus whose zeros and poles have
orders prescribed by . We show that
carries a canonical volume form that is parallel with respect to its affine
complex manifold structure, and that the total volume of
with respect to the measure induced by this volume form is finite.Comment: Streamlined, minor corrections added, definition of the volume form
independent of the choice of a d-th root of unit
Moduli spaces of framed --Higgs bundles and symplectic geometry
Let be a compact connected Riemann surface, a reduced
effective divisor, a connected complex reductive affine algebraic group and
a Zariski closed subgroup for every . A
framed principal --bundle is a pair , where is a
holomorphic principal --bundle on and assigns to each a point of the quotient space . A framed --Higgs bundle is a
framed principal --bundle together with a section such that
is compatible with the framing for every . We
construct a holomorphic symplectic structure on the moduli space
of stable framed --Higgs bundles. Moreover, we prove
that the natural morphism from to the moduli space
of -twisted --Higgs bundles that
forgets the framing, is Poisson. These results generalize \cite{BLP} where
is taken to be . We also investigate the Hitchin system for
and its relationship with that for .Comment: Final versio
On d-graceful labelings
In this paper we introduce a generalization of the well known concept of a
graceful labeling. Given a graph G with e=dm edges, we call d-graceful labeling
of G an injective function from V(G) to the set {0,1,2,..., d(m+1)-1} such that
{|f(x)-f(y)| | [x,y]\in E(G)}
={1,2,3,...,d(m+1)-1}-{m+1,2(m+1),...,(d-1)(m+1)}. In the case of d=1 and of
d=e we find the classical notion of a graceful labeling and of an odd graceful
labeling, respectively. Also, we call d-graceful \alpha-labeling of a bipartite
graph G a d-graceful labeling of G with the property that its maximum value on
one of the two bipartite sets does not reach its minimum value on the other
one. We show that these new concepts allow to obtain certain cyclic graph
decompositions. We investigate the existence of d-graceful \alpha-labelings for
several classes of bipartite graphs, completely solving the problem for paths
and stars and giving partial results about cycles of even length and ladders.Comment: In press on Ars Combi
- …
