18,800,531 research outputs found

    Pion-kaon correlations in central Au+Au collisions at sqrt[sNN]=130 GeV

    Get PDF
    Pion-kaon correlation functions are constructed from central Au+Au STAR data taken at sqrt[sNN]=130 GeV by the STAR detector at the Relativistic Heavy Ion Collider (RHIC). The results suggest that pions and kaons are not emitted at the same average space-time point. Space-momentum correlations, i.e., transverse flow, lead to a space-time emission asymmetry of pions and kaons that is consistent with the data. This result provides new independent evidence that the system created at RHIC undergoes a collective transverse expansion.alle Autoren: J. Adams, C. Adler, M. M. Aggarwal, Z. Ahammed, J. Amonett, B. D. Anderson, M. Anderson, D. Arkhipkin, G. S. Averichev, S. K. Badyal, J. Balewski, O. Barannikova, L. S. Barnby, J. Baudot, S. Bekele, V. V. Belaga, R. Bellwied, J. Berger, B. I. Bezverkhny, S. Bhardwaj, P. Bhaskar, A. K. Bhati, H. Bichsel, A. Billmeier, L. C. Bland, C. O. Blyth, B. E. Bonner, M. Botje, A. Boucham, A. Brandin, A. Bravar, R. V. Cadman, X. Z. Cai, H. Caines, M. Calderón de la Barca Sánchez, J. Carroll, J. Castillo, M. Castro, D. Cebra, P. Chaloupka, S. Chattopadhyay, H. F. Chen, Y. Chen, S. P. Chernenko, M. Cherney, A. Chikanian, B. Choi, W. Christie, J. P. Coffin, T. M. Cormier, J. G. Cramer, H. J. Crawford, D. Das, S. Das, A. A. Derevschikov, L. Didenko, T. Dietel, X. Dong, J. E. Draper, F. Du, A. K. Dubey, V. B. Dunin, J. C. Dunlop, M. R. Dutta Majumdar, V. Eckardt, L. G. Efimov, V. Emelianov, J. Engelage, G. Eppley, B. Erazmus, P. Fachini, V. Faine, J. Faivre, R. Fatemi, K. Filimonov, P. Filip, E. Finch, Y. Fisyak, D. Flierl, K. J. Foley, J. Fu, C. A. Gagliardi, M. S. Ganti, T. D. Gutierrez, N. Gagunashvili, J. Gans, L. Gaudichet, M. Germain, F. Geurts, V. Ghazikhanian, P. Ghosh, J. E. Gonzalez, O. Grachov, V. Grigoriev, S. Gronstal, D. Grosnick, M. Guedon, S. M. Guertin, A. Gupta, E. Gushin, T. J. Hallman, D. Hardtke, J. W. Harris, M. Heinz, T. W. Henry, S. Heppelmann, T. Herston, B. Hippolyte, A. Hirsch, E. Hjort, G. W. Hoffmann, M. Horsley, H. Z. Huang, S. L. Huang, T. J. Humanic, G. Igo, A. Ishihara, P. Jacobs, W. W. Jacobs, M. Janik, I. Johnson, P. G. Jones, E. G. Judd, S. Kabana, M. Kaneta, M. Kaplan, D. Keane, J. Kiryluk, A. Kisiel, J. Klay, S. R. Klein, A. Klyachko, D. D. Koetke, T. Kollegger, A. S. Konstantinov, M. Kopytine, L. Kotchenda, A. D. Kovalenko, M. Kramer, P. Kravtsov, K. Krueger, C. Kuhn, A. I. Kulikov, A. Kumar, G. J. Kunde, C. L. Kunz, R. Kh. Kutuev, A. A. Kuznetsov, M. A. C. Lamont, J. M. Landgraf, S. Lange, C. P. Lansdell, B. Lasiuk, F. Laue, J. Lauret, A. Lebedev, R. Lednický, V. M. Leontiev, M. J. LeVine, C. Li, Q. Li, S. J. Lindenbaum, M. A. Lisa, F. Liu, L. Liu, Z. Liu, Q. J. Liu, T. Ljubicic, W. J. Llope, H. Long, R. S. Longacre, M. Lopez-Noriega, W. A. Love, T. Ludlam, D. Lynn, J. Ma, Y. G. Ma, D. Magestro, S. Mahajan, L. K. Mangotra, D. P. Mahapatra, R. Majka, R. Manweiler, S. Margetis, C. Markert, L. Martin, J. Marx, H. S. Matis, Yu. A. Matulenko, T. S. McShane, F. Meissner, Yu. Melnick, A. Meschanin, M. Messer, M. L. Miller, Z. Milosevich, N. G. Minaev, C. Mironov, D. Mishra, J. Mitchell, B. Mohanty, L. Molnar, C. F. Moore, M. J. Mora-Corral, V. Morozov, M. M. de Moura, M. G. Munhoz, B. K. Nandi, S. K. Nayak, T. K. Nayak, J. M. Nelson, P. Nevski, V. A. Nikitin, L. V. Nogach, B. Norman, S. B. Nurushev, G. Odyniec, A. Ogawa, V. Okorokov, M. Oldenburg, D. Olson, G. Paic, S. U. Pandey, S. K. Pal, Y. Panebratsev, S. Y. Panitkin, A. I. Pavlinov, T. Pawlak, V. Perevoztchikov, W. Peryt, V. A. Petrov, S. C. Phatak, R. Picha, M. Planinic, J. Pluta, N. Porile, J. Porter, A. M. Poskanzer, M. Potekhin, E. Potrebenikova, B. V. K. S. Potukuchi, D. Prindle, C. Pruneau, J. Putschke, G. Rai, G. Rakness, R. Raniwala, S. Raniwala, O. Ravel, R. L. Ray, S. V. Razin, D. Reichhold, J. G. Reid, G. Renault, F. Retiere, A. Ridiger, H. G. Ritter, J. B. Roberts, O. V. Rogachevski, J. L. Romero, A. Rose, C. Roy, L. J. Ruan, V. Rykov, R. Sahoo, I. Sakrejda, S. Salur, J. Sandweiss, I. Savin, J. Schambach, R. P. Scharenberg, N. Schmitz, L. S. Schroeder, K. Schweda, J. Seger, D. Seliverstov, P. Seyboth, E. Shahaliev, M. Shao, M. Sharma, K. E. Shestermanov, S. S. Shimanskii, R. N. Singaraju, F. Simon, G. Skoro, N. Smirnov, R. Snellings, G. Sood, P. Sorensen, J. Sowinski, H. M. Spinka, B. Srivastava, S. Stanislaus, R. Stock, A. Stolpovsky, M. Strikhanov, B. Stringfellow, C. Struck, A. A. P. Suaide, E. Sugarbaker, C. Suire, M. Šumbera, B. Surrow, T. J. M. Symons, A. Szanto de Toledo, P. Szarwas, A. Tai, J. Takahashi, A. H. Tang, D. Thein, J. H. Thomas, V. Tikhomirov, M. Tokarev, M. B. Tonjes, T. A. Trainor, S. Trentalange, R. E. Tribble, M. D. Trivedi, V. Trofimov, O. Tsai, T. Ullrich, D. G. Underwood, G. Van Buren, A. M. VanderMolen, A. N. Vasiliev, M. Vasiliev, S. E. Vigdor, Y. P. Viyogi, S. A. Voloshin, W. Waggoner, F. Wang, G. Wang, X. L. Wang, Z. M. Wang, H. Ward, J. W. Watson, R. Wells, G. D. Westfall, C. Whitten, Jr., H. Wieman, R. Willson, S. W. Wissink, R. Witt, J. Wood, J. Wu, N. Xu, Z. Xu, Z. Z. Xu, A. E. Yakutin, E. Yamamoto, J. Yang, P. Yepes, V. I. Yurevich, Y. V. Zanevski, I. Zborovský, H. Zhang, H. Y. Zhang, W. M. Zhang, Z. P. Zhang, P. A. Żołnierczuk, R. Zoulkarneev, J. Zoulkarneeva, and A. N. Zubarev (STAR Collaboration

    Volume form on moduli spaces of d-differentials

    Full text link
    Given dNd\in \mathbb{N}, gN{0}g\in \mathbb{N} \cup\{0\}, and an integral vector κ=(k1,,kn)\kappa=(k_1,\dots,k_n) such that ki>dk_i>-d and k1++kn=d(2g2)k_1+\dots+k_n=d(2g-2), let ΩdMg,n(κ)\Omega^d\mathcal{M}_{g,n}(\kappa) denote the moduli space of meromorphic dd-differentials on Riemann surfaces of genus gg whose zeros and poles have orders prescribed by κ\kappa. We show that ΩdMg,n(κ)\Omega^d\mathcal{M}_{g,n}(\kappa) carries a canonical volume form that is parallel with respect to its affine complex manifold structure, and that the total volume of PΩdMg,n(κ)=ΩdMg,n/C\mathbb{P}\Omega^d\mathcal{M}_{g,n}(\kappa)=\Omega^d\mathcal{M}_{g,n}/\mathbb{C}^* with respect to the measure induced by this volume form is finite.Comment: Streamlined, minor corrections added, definition of the volume form independent of the choice of a d-th root of unit

    Moduli spaces of framed GG--Higgs bundles and symplectic geometry

    Full text link
    Let XX be a compact connected Riemann surface, DXD\, \subset\, X a reduced effective divisor, GG a connected complex reductive affine algebraic group and HxGxH_x\, \subsetneq\, G_x a Zariski closed subgroup for every xDx\, \in\, D. A framed principal GG--bundle is a pair (EG,ϕ)(E_G,\, \phi), where EGE_G is a holomorphic principal GG--bundle on XX and ϕ\phi assigns to each xDx\, \in\, D a point of the quotient space (EG)x/Hx(E_G)_x/H_x. A framed GG--Higgs bundle is a framed principal GG--bundle (EG,ϕ)(E_G,\, \phi) together with a section θH0(X,ad(EG)KXOX(D))\theta\, \in\, H^0(X,\, \text{ad}(E_G)\otimes K_X\otimes{\mathcal O}_X(D)) such that θ(x)\theta(x) is compatible with the framing ϕ\phi for every xDx\, \in\, D. We construct a holomorphic symplectic structure on the moduli space MFH(G)\mathcal{M}_{FH}(G) of stable framed GG--Higgs bundles. Moreover, we prove that the natural morphism from MFH(G)\mathcal{M}_{FH}(G) to the moduli space MH(G)\mathcal{M}_{H}(G) of DD-twisted GG--Higgs bundles (EG,θ)(E_G,\, \theta) that forgets the framing, is Poisson. These results generalize \cite{BLP} where (G,{Hx}xD)(G,\, \{H_x\}_{x\in D}) is taken to be (GL(r,C),{Ir×r}xD)(\text{GL}(r,{\mathbb C}),\, \{\text{I}_{r\times r}\}_{x\in D}). We also investigate the Hitchin system for MFH(G)\mathcal{M}_{FH}(G) and its relationship with that for MH(G)\mathcal{M}_{H}(G).Comment: Final versio

    On d-graceful labelings

    Full text link
    In this paper we introduce a generalization of the well known concept of a graceful labeling. Given a graph G with e=dm edges, we call d-graceful labeling of G an injective function from V(G) to the set {0,1,2,..., d(m+1)-1} such that {|f(x)-f(y)| | [x,y]\in E(G)} ={1,2,3,...,d(m+1)-1}-{m+1,2(m+1),...,(d-1)(m+1)}. In the case of d=1 and of d=e we find the classical notion of a graceful labeling and of an odd graceful labeling, respectively. Also, we call d-graceful \alpha-labeling of a bipartite graph G a d-graceful labeling of G with the property that its maximum value on one of the two bipartite sets does not reach its minimum value on the other one. We show that these new concepts allow to obtain certain cyclic graph decompositions. We investigate the existence of d-graceful \alpha-labelings for several classes of bipartite graphs, completely solving the problem for paths and stars and giving partial results about cycles of even length and ladders.Comment: In press on Ars Combi
    corecore