2,573 research outputs found
The glass transition and the Coulomb gap in electron glasses
We establish the connection between the presence of a glass phase and the
appearance of a Coulomb gap in disordered materials with strongly interacting
electrons. Treating multiparticle correlations in a systematic way, we show
that in the case of strong disorder a continuous glass transition takes place
whose Landau expansion is identical to that of the Sherrington-Kirkpatrick spin
glass. We show that the marginal stability of the glass phase controls the
physics of these systems: it results in slow dynamics and leads to the
formation of a Coulomb gap
Universal Crossover between Efros-Shklovskii and Mott Variable-Range-Hopping Regimes
A universal scaling function, describing the crossover between the Mott and
the Efros-Shklovskii hopping regimes, is derived, using the percolation picture
of transport in strongly localized systems. This function is agrees very well
with experimental data. Quantitative comparison with experiment allows for the
possible determination of the role played by polarons in the transport.Comment: 7 pages + 1 figure, Revte
Non-Markovian Configurational Diffusion and Reaction Coordinates for Protein Folding
The non-Markovian nature of polymer motions is accounted for in folding
kinetics, using frequency-dependent friction. Folding, like many other problems
in the physics of disordered systems, involves barrier crossing on a correlated
energy landscape. A variational transition state theory (VTST) that reduces to
the usual Bryngelson-Wolynes Kramers approach when the non-Markovian aspects
are neglected is used to obtain the rate, without making any assumptions
regarding the size of the barrier, or the memory time of the friction. The
transformation to collective variables dependent on the dynamics of the system
allows the theory to address the controversial issue of what are ``good''
reaction coordinates for folding.Comment: 9 pages RevTeX, 3 eps-figures included, submitted to PR
Electronic correlation effects and the Coulomb gap at finite temperature
We have investigated the effect of the long-range Coulomb interaction on the
one-particle excitation spectrum of n-type Germanium, using tunneling
spectroscopy on mechanically controllable break junctions. The tunnel
conductance was measured as a function of energy and temperature. At low
temperatures, the spectra reveal a minimum at zero bias voltage due to the
Coulomb gap. In the temperature range above 1 K the Coulomb gap is filled by
thermal excitations. This behavior is reflected in the temperature dependence
of the variable-range hopping resitivity measured on the same samples: Up to a
few degrees Kelvin the Efros-Shkovskii ln law is obeyed,
whereas at higher temperatures deviations from this law are observed,
indicating a cross-over to Mott's ln law. The mechanism of
this cross-over is different from that considered previously in the literature.Comment: 3 pages, 3 figure
Ultrahigh Bandwidth Spin Noise Spectroscopy: Detection of Large g-Factor Fluctuations in Highly n-Doped GaAs
We advance all optical spin noise spectroscopy (SNS) in semiconductors to
detection bandwidths of several hundred gigahertz by employing an ingenious
scheme of pulse trains from ultrafast laser oscillators as an optical probe.
The ultrafast SNS technique avoids the need for optical pumping and enables
nearly perturbation free measurements of extremely short spin dephasing times.
We employ the technique to highly n-doped bulk GaAs where magnetic field
dependent measurements show unexpected large g-factor fluctuations.
Calculations suggest that such large g-factor fluctuations do not necessarily
result from extrinsic sample variations but are intrinsically present in every
doped semiconductor due to the stochastic nature of the dopant distribution.Comment: 5 pages, 3 figure
Hopping Conduction in Uniaxially Stressed Si:B near the Insulator-Metal Transition
Using uniaxial stress to tune the critical density near that of the sample,
we have studied in detail the low-temperature conductivity of p-type Si:B in
the insulating phase very near the metal-insulator transition. For all values
of temperature and stress, the conductivity collapses onto a single universal
scaling curve. For large values of the argument, the scaling function is well
fit by the exponentially activated form associated with variable range hopping
when electron-electron interactions cause a soft Coulomb gap in the density of
states at the Fermi energy. The temperature dependence of the prefactor,
corresponding to the T-dependence of the critical curve, has been determined
reliably for this system, and is proportional to the square-root of T. We show
explicitly that nevlecting the prefactor leads to substantial errors in the
determination of the scaling parameters and the critical exponents derived from
them. The conductivity is not consistent with Mott variable-range hopping in
the critical region nor does it obey this form for any range of the parameters.
Instead, for smaller argument of the scaling function, the conductivity of Si:B
is well fit by an exponential form with exponent 0.31 related to the critical
exponents of the system at the metal- insulator transition.Comment: 13 pages, 6 figure
On the structure of the energy distribution function in the hopping regime
The impact of the dispersion of the transport coefficients on the structure
of the energy distribution function for charge carriers far from equilibrium
has been investigated in effective-medium approximation for model densities of
states. The investigations show that two regimes can be observed in energy
relaxation processes. Below a characteristic temperature the structure of the
energy distribution function is determined by the dispersion of the transport
coefficients. Thermal energy diffusion is irrelevant in this regime. Above the
characteristic temperature the structure of the energy distribution function is
determined by energy diffusion. The characteristic temperature depends on the
degree of disorder and increases with increasing disorder. Explicit expressions
for the energy distribution function in both regimes are derived for a constant
and an exponential density of states.Comment: 16 page
Catalog of selected heavy duty transport energy management models
A catalog of energy management models for heavy duty transport systems powered by diesel engines is presented. The catalog results from a literature survey, supplemented by telephone interviews and mailed questionnaires to discover the major computer models currently used in the transportation industry in the following categories: heavy duty transport systems, which consist of highway (vehicle simulation), marine (ship simulation), rail (locomotive simulation), and pipeline (pumping station simulation); and heavy duty diesel engines, which involve models that match the intake/exhaust system to the engine, fuel efficiency, emissions, combustion chamber shape, fuel injection system, heat transfer, intake/exhaust system, operating performance, and waste heat utilization devices, i.e., turbocharger, bottoming cycle
Superscars in the LiNC=LiCN isomerization reaction
We demonstrate the existence of superscarring in the LiNC=LiCN isomerization
reaction described by a realistic potential interaction in the range of readily
attainable experimental energies. This phenomenon arises as the effect of two
periodic orbits appearing "out of the blue"in a saddle--node bifurcation taking
place in the dynamics of the system. Potential practical consequences of this
superlocalization in the corresponding wave functions are also considered.Comment: 6 pages, 5 figures. to appear in EP
Anomalous Hopping Exponents of Ultrathin Films of Metals
The temperature dependence of the resistance R(T) of ultrathin
quench-condensed films of Ag, Bi, Pb and Pd has been investigated. In the most
resistive films, R(T)=Roexp(To/T)^x, where x=0.75. Surprisingly, the exponent x
was found to be constant for a wide range of Ro and To in all four materials,
possibly implying a consistent underlying conduction mechanism. The results are
discussed in terms of several different models of hopping conduction.Comment: 6 pages, 5 figure
- …
