33,578 research outputs found
Probabilistic sizing of laminates with uncertainties
A reliability based design methodology for laminate sizing and configuration for a special case of composite structures is described. The methodology combines probabilistic composite mechanics with probabilistic structural analysis. The uncertainties of constituent materials (fiber and matrix) to predict macroscopic behavior are simulated using probabilistic theory. Uncertainties in the degradation of composite material properties are included in this design methodology. A multi-factor interaction equation is used to evaluate load and environment dependent degradation of the composite material properties at the micromechanics level. The methodology is integrated into a computer code IPACS (Integrated Probabilistic Assessment of Composite Structures). Versatility of this design approach is demonstrated by performing a multi-level probabilistic analysis to size the laminates for design structural reliability of random type structures. The results show that laminate configurations can be selected to improve the structural reliability from three failures in 1000, to no failures in one million. Results also show that the laminates with the highest reliability are the least sensitive to the loading conditions
Failure time and microcrack nucleation
The failure time of samples of heterogeneous materials (wood, fiberglass) is
studied as a function of the applied stress. It is shown that in these
materials the failure time is predicted with a good accuracy by a model of
microcrack nucleation proposed by Pomeau. It is also shown that the crack
growth process presents critical features when the failure time is approached.Comment: 13 pages, 4 figures, submitted to Europhysics Letter
Khinchin theorem for integral points on quadratic varieties
We prove an analogue the Khinchin theorem for the Diophantine approximation
by integer vectors lying on a quadratic variety. The proof is based on the
study of a dynamical system on a homogeneous space of the orthogonal group. We
show that in this system, generic trajectories visit a family of shrinking
subsets infinitely often.Comment: 19 page
ARPES in the normal state of the cuprates: comparing the marginal Fermi liquid and spin fluctuation scenarios
We address the issue whether ARPES measurements of the spectral function near the Fermi surface in the normal state of near optimally doped
cuprates can distinguish between the marginal Fermi liquid scenario and the
spin-fluctuation scenario. We argue that the data for momenta near the Fermi
surface are equally well described by both theories, but this agreement is
nearly meaningless as in both cases one has to add to a large constant of yet unknown origin. We show that the data can be
well fitted by keeping only this constant term in the self-energy. To
distinguish between the two scenarios, one has to analyze the data away from
the Fermi surface, when the intrinsic piece in becomes
dominant.Comment: Accepted for publication in Europhysics Letters, Incorrect
interpretation of reference 10 correcte
Towards More Data-Aware Application Integration (extended version)
Although most business application data is stored in relational databases,
programming languages and wire formats in integration middleware systems are
not table-centric. Due to costly format conversions, data-shipments and faster
computation, the trend is to "push-down" the integration operations closer to
the storage representation.
We address the alternative case of defining declarative, table-centric
integration semantics within standard integration systems. For that, we replace
the current operator implementations for the well-known Enterprise Integration
Patterns by equivalent "in-memory" table processing, and show a practical
realization in a conventional integration system for a non-reliable,
"data-intensive" messaging example. The results of the runtime analysis show
that table-centric processing is promising already in standard, "single-record"
message routing and transformations, and can potentially excel the message
throughput for "multi-record" table messages.Comment: 18 Pages, extended version of the contribution to British
International Conference on Databases (BICOD), 2015, Edinburgh, Scotlan
Ab initio molecular dynamics using density based energy functionals: application to ground state geometries of some small clusters
The ground state geometries of some small clusters have been obtained via ab
initio molecular dynamical simulations by employing density based energy
functionals. The approximate kinetic energy functionals that have been employed
are the standard Thomas-Fermi along with the Weizsacker correction
and a combination . It is shown that the functional
involving gives superior charge densities and bondlengths over the
standard functional. Apart from dimers and trimers of Na, Mg, Al, Li, Si,
equilibrium geometries for and clusters have also
been reported. For all the clusters investigated, the method yields the ground
state geometries with the correct symmetries with bondlengths within 5\% when
compared with the corresponding results obtained via full orbital based
Kohn-Sham method. The method is fast and a promising one to study the ground
state geometries of large clusters.Comment: 15 pages, 3 PS figure
- …
