111,608 research outputs found
Renormalization Group Treatment of Nonrenormalizable Interactions
The structure of the UV divergencies in higher dimensional nonrenormalizable
theories is analysed. Based on renormalization operation and renormalization
group theory it is shown that even in this case the leading divergencies
(asymptotics) are governed by the one-loop diagrams the number of which,
however, is infinite. Explicit expression for the one-loop counter term in an
arbitrary D-dimensional quantum field theory without derivatives is suggested.
This allows one to sum up the leading asymptotics which are independent of the
arbitrariness in subtraction of higher order operators. Diagrammatic
calculations in a number of scalar models in higher loops are performed to be
in agreement with the above statements. These results do not support the idea
of the na\"ive power-law running of couplings in nonrenormalizable theories and
fail (with one exception) to reveal any simple closed formula for the leading
terms.Comment: LaTex, 11 page
Strings and Branes in Nonabelian Gauge Theory
It is an old speculation that SU(N) gauge theory can alternatively be
formulated as a string theory. Recently this subject has been revived, in the
wake of the discovery of D-branes. In particular, it has been argued that at
least some conformally invariant cousins of the theory have such a string
representation. This is a pedagogical introduction to these developments for
non-string theorists. Some of the existing arguments are simplified.Comment: Reference adde
Cluster Algorithm Renormalization Group Study of Universal Fluctuations in the 2D Ising Model
In this paper we propose a novel method to study critical systems numerically
by a combined collective-mode algorithm and Renormalization Group on the
lattice. This method is an improved version of MCRG in the sense that it has
all the advantages of cluster algorithms. As an application we considered the
2D Ising model and studied wether scale invariance or universality are possible
underlying mechanisms responsible for the approximate "universal fluctuations"
close to a so-called bulk temperature . "Universal fluctuations" was
first proposed in [1] and stated that the probability density function of a
global quantity for very dissimilar systems, like a confined turbulent flow and
a 2D magnetic system, properly normalized to the first two moments, becomes
similar to the "universal distribution", originally obtained for the
magnetization in the 2D XY model in the low temperature region. The results for
the critical exponents and the renormalization group flow of the probability
density function are very accurate and show no evidence to support that the
approximate common shape of the PDF should be related to both scale invariance
or universal behavior.Comment: 6 pages, 4 figures and 3 table
Reconstructed warm season temperatures for Nome, Seward Peninsula, Alaska
[1] Understanding of past climate variability in the Bering Strait region and adjacent land areas is limited by a paucity of long instrumental and paleoclimatic records. Here we describe a reconstruction of May - August temperatures for Nome, Seward Peninsula, Alaska based on maximum latewood density data which considerably extends the available climatic information. The reconstruction shows warm conditions in the late 1600s and middle-20th century and cooler conditions in the 1800s. The summer of 1783, coinciding with the Laki, Iceland volcanic event, is among the coldest in the reconstruction. Statistically significant relationships with the North Pacific Index and Bering-Chukchi sea surface temperatures indicate that the Seward tree-ring data are potentially useful as long-term indices of atmosphere-ocean variability in the region.</p
Design considerations for a monolithic, GaAs, dual-mode, QPSK/QASK, high-throughput rate transceiver
A monolithic, GaAs, dual mode, quadrature amplitude shift keying and quadrature phase shift keying transceiver with one and two billion bits per second data rate is being considered to achieve a low power, small and ultra high speed communication system for satellite as well as terrestrial purposes. Recent GaAs integrated circuit achievements are surveyed and their constituent device types are evaluated. Design considerations, on an elemental level, of the entire modem are further included for monolithic realization with practical fabrication techniques. Numerous device types, with practical monolithic compatability, are used in the design of functional blocks with sufficient performances for realization of the transceiver
Phenomenological theory of spin excitations in La- and Y-based cuprates
Motivated by recent inelastic neutron scattering (INS) experiments on
La-based cuprates and based on the fermiology theories, we study the spin
susceptibility for La-based (e.g., LaSrCuO) and Y-based (e.g.,
YBaCuO) cuprates, respectively. The spin excitation in
YBaCuO is dominated by a sharp resonance peak at the frequency 40
meV in the superconducting state. Below and above the resonance frequency, the
incommensurate (IC) peaks develop and the intensity of the peaks decreases
dramatically. In the normal state, the resonant excitation does not occur and
the IC peaks are merged into commensurate ones. The spin excitation of
LaSrCuO is significantly different from that of Y-based ones,
namely, the resonance peak does not exist due to the decreasing of the
superconducting gap and the presence of the possible spin-stripe order. The
spectra are only enhanced at the expected resonance frequency (about 18 meV)
while it is still incommensurate. On the other hand, another frequency scale at
the frequency 55 meV is also revealed, namely the spectra are commensurate and
local maximum at this frequency. We elaborate all the results based on the
Fermi surface topology and the d-wave superconductivity, and suggest that the
spin-stripe order be also important in determining the spin excitation of
La-based cuprates. A coherent picture for the spin excitations is presented for
Y-based and La-based cuprates.Comment: 8 pages, 8 figure
Emergency burr holes:" How to do it"
This paper describes a simple approach to emergency burr hole evacuation of extra-axial intracranial haematoma that can be used in the uncommon situation when life saving specialist neurosurgical intervention is not available
Systematic Renormalization in Hamiltonian Light-Front Field Theory: The Massive Generalization
Hamiltonian light-front field theory can be used to solve for hadron states
in QCD. To this end, a method has been developed for systematic renormalization
of Hamiltonian light-front field theories, with the hope of applying the method
to QCD. It assumed massless particles, so its immediate application to QCD is
limited to gluon states or states where quark masses can be neglected. This
paper builds on the previous work by including particle masses
non-perturbatively, which is necessary for a full treatment of QCD. We show
that several subtle new issues are encountered when including masses
non-perturbatively. The method with masses is algebraically and conceptually
more difficult; however, we focus on how the methods differ. We demonstrate the
method using massive phi^3 theory in 5+1 dimensions, which has important
similarities to QCD.Comment: 7 pages, 2 figures. Corrected error in Eq. (11), v3: Added extra
disclaimer after Eq. (2), and some clarification at end of Sec. 3.3. Final
published versio
- …
