949 research outputs found
Nuclear spin pumping and electron spin susceptibilities
In this work we present a new formalism to evaluate the nuclear spin dynamics
driven by hyperfine interaction with non-equilibrium electron spins. To
describe the dynamics up to second order in the hyperfine coupling, it suffices
to evaluate the susceptibility and fluctuations of the electron spin. Our
approach does not rely on a separation of electronic energy scales or the
specific choice of electronic basis states, thereby overcoming practical
problems which may arise in certain limits when using a more traditional
formalism based on rate equations.Comment: 9 pages, 2 figure
Identifying network communities with a high resolution
Community structure is an important property of complex networks. An
automatic discovery of such structure is a fundamental task in many
disciplines, including sociology, biology, engineering, and computer science.
Recently, several community discovery algorithms have been proposed based on
the optimization of a quantity called modularity (Q). However, the problem of
modularity optimization is NP-hard, and the existing approaches often suffer
from prohibitively long running time or poor quality. Furthermore, it has been
recently pointed out that algorithms based on optimizing Q will have a
resolution limit, i.e., communities below a certain scale may not be detected.
In this research, we first propose an efficient heuristic algorithm, Qcut,
which combines spectral graph partitioning and local search to optimize Q.
Using both synthetic and real networks, we show that Qcut can find higher
modularities and is more scalable than the existing algorithms. Furthermore,
using Qcut as an essential component, we propose a recursive algorithm, HQcut,
to solve the resolution limit problem. We show that HQcut can successfully
detect communities at a much finer scale and with a higher accuracy than the
existing algorithms. Finally, we apply Qcut and HQcut to study a
protein-protein interaction network, and show that the combination of the two
algorithms can reveal interesting biological results that may be otherwise
undetectable.Comment: 14 pages, 5 figures. 1 supplemental file at
http://cic.cs.wustl.edu/qcut/supplemental.pd
Optimal map of the modular structure of complex networks
Modular structure is pervasive in many complex networks of interactions
observed in natural, social and technological sciences. Its study sheds light
on the relation between the structure and function of complex systems.
Generally speaking, modules are islands of highly connected nodes separated by
a relatively small number of links. Every module can have contributions of
links from any node in the network. The challenge is to disentangle these
contributions to understand how the modular structure is built. The main
problem is that the analysis of a certain partition into modules involves, in
principle, as many data as number of modules times number of nodes. To confront
this challenge, here we first define the contribution matrix, the mathematical
object containing all the information about the partition of interest, and
after, we use a Truncated Singular Value Decomposition to extract the best
representation of this matrix in a plane. The analysis of this projection allow
us to scrutinize the skeleton of the modular structure, revealing the structure
of individual modules and their interrelations.Comment: 21 pages, 10 figure
Quantum Tunneling Detection of Two-photon and Two-electron Processes
We analyze the operation of a quantum tunneling detector coupled to a
coherent conductor. We demonstrate that in a certain energy range the output of
the detector is determined by two-photon processes, two-electron processes and
the interference of the two. We show how the individual contributions of these
processes can be resolved in experiments.Comment: 4 pages, 4 figure
Community Detection as an Inference Problem
We express community detection as an inference problem of determining the
most likely arrangement of communities. We then apply belief propagation and
mean-field theory to this problem, and show that this leads to fast, accurate
algorithms for community detection.Comment: 4 pages, 2 figure
Benchmarks for testing community detection algorithms on directed and weighted graphs with overlapping communities
Many complex networks display a mesoscopic structure with groups of nodes
sharing many links with the other nodes in their group and comparatively few
with nodes of different groups. This feature is known as community structure
and encodes precious information about the organization and the function of the
nodes. Many algorithms have been proposed but it is not yet clear how they
should be tested. Recently we have proposed a general class of undirected and
unweighted benchmark graphs, with heterogenous distributions of node degree and
community size. An increasing attention has been recently devoted to develop
algorithms able to consider the direction and the weight of the links, which
require suitable benchmark graphs for testing. In this paper we extend the
basic ideas behind our previous benchmark to generate directed and weighted
networks with built-in community structure. We also consider the possibility
that nodes belong to more communities, a feature occurring in real systems,
like, e. g., social networks. As a practical application, we show how
modularity optimization performs on our new benchmark.Comment: 9 pages, 13 figures. Final version published in Physical Review E.
The code to create the benchmark graphs can be freely downloaded from
http://santo.fortunato.googlepages.com/inthepress
Fast Community Identification by Hierarchical Growth
A new method for community identification is proposed which is founded on the
analysis of successive neighborhoods, reached through hierarchical growth from
a starting vertex, and on the definition of communities as a subgraph whose
number of inner connections is larger than outer connections. In order to
determine the precision and speed of the method, it is compared with one of the
most popular community identification approaches, namely Girvan and Newman's
algorithm. Although the hierarchical growth method is not as precise as Girvan
and Newman's method, it is potentially faster than most community finding
algorithms.Comment: 6 pages, 5 figure
Outlier Edge Detection Using Random Graph Generation Models and Applications
Outliers are samples that are generated by different mechanisms from other
normal data samples. Graphs, in particular social network graphs, may contain
nodes and edges that are made by scammers, malicious programs or mistakenly by
normal users. Detecting outlier nodes and edges is important for data mining
and graph analytics. However, previous research in the field has merely focused
on detecting outlier nodes. In this article, we study the properties of edges
and propose outlier edge detection algorithms using two random graph generation
models. We found that the edge-ego-network, which can be defined as the induced
graph that contains two end nodes of an edge, their neighboring nodes and the
edges that link these nodes, contains critical information to detect outlier
edges. We evaluated the proposed algorithms by injecting outlier edges into
some real-world graph data. Experiment results show that the proposed
algorithms can effectively detect outlier edges. In particular, the algorithm
based on the Preferential Attachment Random Graph Generation model consistently
gives good performance regardless of the test graph data. Further more, the
proposed algorithms are not limited in the area of outlier edge detection. We
demonstrate three different applications that benefit from the proposed
algorithms: 1) a preprocessing tool that improves the performance of graph
clustering algorithms; 2) an outlier node detection algorithm; and 3) a novel
noisy data clustering algorithm. These applications show the great potential of
the proposed outlier edge detection techniques.Comment: 14 pages, 5 figures, journal pape
Suppression of Zeeman gradients by nuclear polarization in double quantum dots
We use electric dipole spin resonance to measure dynamic nuclear polarization
in InAs nanowire quantum dots. The resonance shifts in frequency when the
system transitions between metastable high and low current states, indicating
the presence of nuclear polarization. We propose that the low and the high
current states correspond to different total Zeeman energy gradients between
the two quantum dots. In the low current state, dynamic nuclear polarization
efficiently compensates the Zeeman gradient due to the -factor mismatch,
resulting in a suppressed total Zeeman gradient. We present a theoretical model
of electron-nuclear feedback that demonstrates a fixed point in nuclear
polarization for nearly equal Zeeman splittings in the two dots and predicts a
narrowed hyperfine gradient distribution
- …
