631 research outputs found

    Modell eines Guidance-Systems für Abiturienten und Studenten

    Get PDF

    Structures performance, benefit, cost-study

    Get PDF
    New technology concepts and structural analysis development needs which could lead to improved life cycle cost for future high-bypass turbofans were studied. The NASA-GE energy efficient engine technology is used as a base to assess the concept benefits. Recommended programs are identified for attaining these generic structural and other beneficial technologies

    Far-infrared absorption in parallel quantum wires with weak tunneling

    Full text link
    We study collective and single-particle intersubband excitations in a system of quantum wires coupled via weak tunneling. For an isolated wire with parabolic confinement, the Kohn's theorem guarantees that the absorption spectrum represents a single sharp peak centered at the frequency given by the bare confining potential. We show that the effect of weak tunneling between two parabolic quantum wires is twofold: (i) additional peaks corresponding to single-particle excitations appear in the absorption spectrum, and (ii) the main absorption peak acquires a depolarization shift. We also show that the interplay between tunneling and weak perpendicular magnetic field drastically enhances the dispersion of single-particle excitations. The latter leads to a strong damping of the intersubband plasmon for magnetic fields exceeding a critical value.Comment: 18 pages + 6 postcript figure

    Gauge invariant grid discretization of Schr\"odinger equation

    Full text link
    Using the Wilson formulation of lattice gauge theories, a gauge invariant grid discretization of a one-particle Hamiltonian in the presence of an external electromagnetic field is proposed. This Hamiltonian is compared both with that obtained by a straightforward discretization of the continuous Hamiltonian by means of balanced difference methods, and with a tight-binding Hamiltonian. The proposed Hamiltonian and the balanced difference one are used to compute the energy spectrum of a charged particle in a two-dimensional parabolic potential in the presence of a perpendicular, constant magnetic field. With this example we point out how a "naive" discretization gives rise to an explicit breaking of the gauge invariance and to large errors in the computed eigenvalues and corresponding probability densities; in particular, the error on the eigenfunctions may lead to very poor estimates of the mean values of some relevant physical quantities on the corresponding states. On the contrary, the proposed discretized Hamiltonian allows a reliable computation of both the energy spectrum and the probability densities.Comment: 7 pages, 4 figures, discussion about tight-binding Hamiltonians adde

    Magnetoplasmon excitations in arrays of circular and noncircular quantum dots

    Full text link
    We have investigated the magnetoplasmon excitations in arrays of circular and noncircular quantum dots within the Thomas-Fermi-Dirac-von Weizs\"acker approximation. Deviations from the ideal collective excitations of isolated parabolically confined electrons arise from local perturbations of the confining potential as well as interdot Coulomb interactions. The latter are unimportant unless the interdot separations are of the order of the size of the dots. Local perturbations such as radial anharmonicity and noncircular symmetry lead to clear signatures of the violation of the generalized Kohn theorem. In particular, the reduction of the local symmetry from SO(2) to C4C_4 results in a resonant coupling of different modes and an observable anticrossing behaviour in the power absorption spectrum. Our results are in good agreement with recent far-infrared (FIR) transmission experiments.Comment: 25 pages, 6 figures, typeset in RevTe

    Magnetoplasmon excitations in an array of periodically modulated quantum wires

    Full text link
    Motivated by the recent experiment of Hochgraefe et al., we have investigated the magnetoplasmon excitations in a periodic array of quantum wires with a periodic modulation along the wire direction. The equilibrium and dynamic properties of the system are treated self-consistently within the Thomas-Fermi-Dirac-von Weizsaecker approximation. A calculation of the dynamical response of the system to a far-infrared radiation field reveals a resonant anticrossing between the Kohn mode and a finite-wavevector longitudinal excitation which is induced by the density modulation along the wires. Our theoretical calculations are found to be in excellent agreement with experiment.Comment: 9 pages, 8 figure

    Inelastic Coulomb scattering rates due to acoustic and optical plasmon modes in coupled quantum wires

    Full text link
    We report a theoretical study on the inelastic Coulomb scattering rate of an injected electron in two coupled quantum wires in quasi-one-dimensional doped semiconductors. Two peaks appear in the scattering spectrum due to the optical and the acoustic plasmon scattering in the system. We find that the scattering rate due to the optical plasmon mode is similar to that in a single wire but the acoustic plasmon scattering depends crucially on its dispersion relation at small qq. Furthermore, the effects of tunneling between the two wires are studied on the inelastic Coulomb scattering rate. We show that a weak tunneling can strongly affect the acoustic plasmon scattering.Comment: 6 Postscript figure

    Microwave-induced magnetotransport phenomena in two-dimensional electron systems: Importance of electrodynamic effects

    Full text link
    We discuss possible origins of recently discovered microwave induced photoresistance oscillations in very-high-electron-mobility two-dimensional electron systems. We show that electrodynamic effects -- the radiative decay, plasma oscillations, and retardation effects, -- are important under the experimental conditions, and that their inclusion in the theory is essential for understanding the discussed and related microwave induced magnetotransport phenomena.Comment: 5 pages, including 2 figures and 1 tabl

    Electronic Spectral Functions for Quantum Hall Edge States

    Full text link
    We have evaluated wavevector-dependent electronic spectral functions for integer and fractional quantum Hall edge states using a chiral Luttinger liquid model. The spectral functions have a finite width and a complicated line shape because of the long-range of the Coulomb interaction. We discuss the possibility of probing these line shapes in vertical tunneling experiments.Comment: 4 pages, RevTex, two figures included, to appear as a Rapid Communication in PRB; we updated references which have recently appeared in print and were cited as preprints in our ealier submissio

    A Simple Shell Model for Quantum Dots in a Tilted Magnetic Field

    Full text link
    A model for quantum dots is proposed, in which the motion of a few electrons in a three-dimensional harmonic oscillator potential under the influence of a homogeneous magnetic field of arbitrary direction is studied. The spectrum and the wave functions are obtained by solving the classical problem. The ground state of the Fermi-system is obtained by minimizing the total energy with regard to the confining frequencies. From this a dependence of the equilibrium shape of the quantum dot on the electron number, the magnetic field parameters and the slab thickness is found.Comment: 15 pages (Latex), 3 epsi figures, to appear in PhysRev B, 55 Nr. 20 (1997
    corecore