155 research outputs found

    Distribution of calcifying and silicifying phytoplankton in relation to environmental and biogeochemical parameters during the late stages of the 2005 North East Atlantic Spring Bloom

    Get PDF
    The late stage of the North East Atlantic (NEA) spring bloom was investigated during June 2005 along a transect section from 45 to 66° N between 15 and 20° W in order to characterize the contribution of siliceous and calcareous phytoplankton groups and describe their distribution in relation to environmental factors. We measured several biogeochemical parameters such as nutrients, surface trace metals, algal pigments, biogenic silica (BSi), particulate inorganic carbon (PIC) or calcium carbonate, particulate organic carbon, nitrogen and phosphorus (POC, PON and POP, respectively), as well as transparent exopolymer particles (TEP). Results were compared with other studies undertaken in this area since the JGOFS NABE program. Characteristics of the spring bloom generally agreed well with the accepted scenario for the development of the autotrophic community. The NEA seasonal diatom bloom was in the late stages when we sampled the area and diatoms were constrained to the northern part of our transect, over the Icelandic Basin (IB) and Icelandic Shelf (IS). Coccolithophores dominated the phytoplankton community, with a large distribution over the Rockall-Hatton Plateau (RHP) and IB. The Porcupine Abyssal Plain (PAP) region at the southern end of our transect was the region with the lowest biomass, as demonstrated by very low Chl<i>a</i> concentrations and a community dominated by picophytoplankton. Early depletion of dissolved silicic acid (DSi) and increased stratification of the surface layer most likely triggered the end of the diatom bloom, leading to coccolithophore dominance. The chronic Si deficiency observed in the NEA could be linked to moderate Fe limitation, which increases the efficiency of the Si pump. TEP closely mirrored the distribution of both biogenic silica at depth and prymnesiophytes in the surface layer suggesting the sedimentation of the diatom bloom in the form of aggregates, but the relative contribution of diatoms and coccolithophores to carbon export in this area still needs to be resolved

    Phaeocystis antarctica unusual summer bloom in stratified antarctic coastal waters (Terra Nova Bay, Ross Sea)

    Get PDF
    This study focuses on the potential explanations for a Phaeocystis antarctica summer bloom occurred in stratified waters of Terra Nova Bay (TNB) - which is part of the Antarctic Special Protected Area (n.161) in the Ross Sea - trough a multi-parameter correlative approach. Many previous studies have highlighted that water column stratification typically favors diatom dominance compared to the colonial haptophyte P. antarctica, in the Ross Sea, and this correlation has often been used to explain the historic dominance of diatoms in TNB. To explore the spatial and temporal progression of P. antarctica bloom in coastal waters, four stations were sampled three times each between December 31, 2009 and January 13, 2010. Taxonomic and pigment composition of phytoplankton communities, macro-nutrient concentrations and various different indices, all indicated the relative dominance of P. antarctica. Cell abundances revealed that P. antarctica contributed 79% of total cell counts in the upper 25 m and 93% in the lower photic zone. Similarly, a strong correlation was observed between Chl-a and the Hex:Fuco pigment ratio, corroborating the microscopic analyses. Recent studies have shown that iron can trigger colonial P. antarctica blooms. Based on the Hex:Chl-c3 proxy for iron limitation in P. antarctica, we hypothesize that anomalously higher iron fluxes were responsible for the unusual bloom of colonial P. antarctica observed in TNB

    53BP1 promotes non-homologous end joining of telomeres by increasing chromatin mobility

    Get PDF
    Double-strand breaks activate the ataxia telangiectasia mutated (ATM) kinase, which promotes the accumulation of DNA damage factors in the chromatin surrounding the break. The functional significance of the resulting DNA damage foci is poorly understood. Here we show that 53BP1 (also known as TRP53BP1), a component of DNA damage foci, changes the dynamic behaviour of chromatin to promote DNA repair. We used conditional deletion of the shelterin component TRF2 (also known as TERF2) from mouse cells (TRF2fl/-) to deprotect telomeres, which, like double-strand breaks, activate the ATM kinase, accumulate 53BP1 and are processed by non-homologous end joining (NHEJ). Deletion of TRF2 from 53BP1-deficient cells established that NHEJ of dysfunctional telomeres is strongly dependent on the binding of 53BP1 to damaged chromosome ends. To address the mechanism by which 53BP1 promotes NHEJ, we used time-lapse microscopy to measure telomere dynamics before and after their deprotection. Imaging showed that deprotected telomeres are more mobile and sample larger territories within the nucleus. This change in chromatin dynamics was dependent on 53BP1 and ATM but did not require a functional NHEJ pathway. We propose that the binding of 53BP1 near DNA breaks changes the dynamic behaviour of the local chromatin, thereby facilitating NHEJ repair reactions that involve distant sites, including joining of dysfunctional telomeres and AID (also known as AICDA)-induced breaks in immunoglobulin class-switch recombination

    Effects of Iron, Silicate, and Light on Dimethylsulfoniopropionate Production in the Australian Subantarctic Zone

    Get PDF
    Shipboard bottle incubation experiments were performed to investigate the effects of iron, light, and silicate on algal production of particulate dimethylsulfoniopropionate (DMSPp) in the Subantarctic Zone (SAZ) south of Tasmania during March 1998. Iron enrichment resulted in threefold to ninefold increases in DMSPp concentrations relative to control treatments, following 7 and 8-day incubation experiments. Additions of Fe and Si preferentially stimulated the growth of lightly-silicified pennate diatoms and siliceous haptophytes, respectively, to which we attribute the increased DMSPp production in the incubation bottles. Both of these algal groups were previously believed to be low DMSPp producers; however, our experimental data suggest that addition of iron and silicate to the low-silicate low-iron waters of the SAZ will result in increased production of DMSPp by lightly silicified diatoms and siliceous haptophytes, respectively. Increased irradiance enhanced DMSPp production in iron-amended treatments with both low (0.5 nM) and high (5 nM) concentrations of added iron. However, the role of light in stimulating DMSPp production was apparently of secondary importance compared to the effects of iron addition. The combination of high irradiance and high iron enrichment produced the highest DMSPp production in the experiments, suggesting that iron and light may have a synergistic effect in limiting algal DMSPp production in subantarctic waters

    Control of Phytoplankton Growth by Iron and Silicic Acid Availability in the Subantarctic Ocean: Experimental Results From the SAZ Project

    Get PDF
    Subantarctic Southern Ocean surface waters in the austral summer and autumn are characterized by high concentrations of nitrate and phosphate but low concentrations of dissolved iron (Fe, similar to0.05 nM) and silicic acid (Si, \u3c1 muM). During the Subantarctic Zone AU9706 cruise in March 1998 we investigated the relative importance of Fe and Si in controlling phytoplankton growth and species composition at a station within the subantarctic water mass (46.8degreesS, 142degreesE) using shipboard bottle incubation experiments. Treatments included unamended controls; 1.9 nM added iron (+Fe); 9 muM added silicic acid (+Si); and 1.9 nM addediron plus 9 muM added silicic acid (+Fe+Si). We followed a detailed set of biological and biogeochemical parameters over 8 days. Fe added alone clearly increased community growth rates and nitrate drawdown and altered algal community composition relative to control treatments. Surprisingly, small, lightly silicified pennate diatoms grew when Fe was added either with or without Si, despite the extremely low ambient silicic acid concentrations. Pigment analyses suggest that lightly silicified chrysophytes (type 4 haptophytes) may have preferentially responded to Si added either with or without Fe. However, for many of the parameters measured the +Fe+Si treatments showed large increases relative to both the +Fe and +Si treatments. Our results suggest that iron is the proximate limiting nutrient for chlorophyll production, photosynthetic efficiency, nitrate drawdown, and diatom growth, but that Si also exerts considerable control over algal growth and species composition. Both nutrients together are needed to elicit a maximum growth response, suggesting that both Fe and Si play important roles in structuring the subantarctic phytoplankton community

    Control of Phytoplankton Growth by Iron Supply and Irradiance in the Subantarctic Southern Ocean: Experimental Results From the SAZ Project

    Get PDF
    The influence of irradiance and Fe supply on phytoplankton processes was studied, north (47°S, 142°E) and south (54°S, 142°E) of the Subantarctic Front in austral autumn (March 1998). At both sites, resident cells exhibited nutrient stress (Fv/Fm 0 at 47°S and 9% I0 at 54°S because of MLDs of 40 (47°S) and 90 m (54°S), when these stations were occupied. The greater MLD at 54°S is reflected by tenfold higher cellular chlorophyll a levels in the resident phytoplankton. In the 47°S experiment, chlorophyll a levels increased to \u3e1 μg/L-1 only in the high-Fe treatments, regardless of irradiance levels, suggesting Fe limitation. This trend was also noted for cell abundances, silica production, and carbon fixation rates. In contrast, in the 54°S experiment there were increases in chlorophyll a (to \u3e2 μg/L-1), cell abundances, silica production, and carbon fixation only in the high-light treatments to which Fe had been added, suggesting that Fe and irradiance limit algal growth rates. Irradiance by altering algal Fe quotas is a key determinant of algal growth rate at 54°S (when silicic acid levels are nonlimiting); however, because of the integral nature of Fe/light colimitation and the restricted nature of the current data set, it was not possible to ascertain the relative contributions of Fe and irradiance to the control of phytoplankton growth. On the basis of a climatology of summer mean MLD for subantarctic (SA) waters south of Australia the 47° and 54°S sites appear to represent minimum and maximum MLDs, where Fe and Fe/irradiance, respectively, may limit/colimit algal growth. The implications for changes in the factors limiting algal growth with season in SA waters are discussed

    Increased sister chromatid cohesion and DNA damage response factor localization at an enzyme-induced DNA double-strand break in vertebrate cells

    Get PDF
    The response to DNA damage in vertebrate cells involves successive recruitment of DNA signalling and repair factors. We used light microscopy to monitor the genetic dependencies of such localization to a single, induced DNA double strand break (DSB) in vertebrate cells. We used an inducible version of the rare-cutting I-SceI endonuclease to cut a chromosomally integrated I-SceI site beside a Tet operator array that was visualized by binding a Tet repressor-GFP fusion. Formation of γ-H2AX foci at a single DSB was independent of ATM or Ku70. ATM-deficient cells showed normal kinetics of 53Bp1 recruitment to DSBs, but Rad51 localization was retarded. 53Bp1 and Rad51 foci formation at a single DSB was greatly reduced in H2AX-null DT40 cells. We also observed decreased inter-sister chromatid distances after DSB induction, suggesting that cohesin loading at DSBs causes elevated sister chromatid cohesion. Loss of ATM reduced DSB-induced cohesion, consistent with cohesin being an ATM target in the DSB response. These data show that the same genetic pathways control how cells respond to single DSBs and to multiple lesions induced by whole-cell DNA damage

    A global database of sea surface dimethylsulfide (DMS) measurements and a procedure to predict sea surface DMS as a function of latitude, longitude, and month

    Get PDF
    47 pages, 13 figures, 7 tablesA database of 15,617 point measurements of dimethylsulfide (DMS) in surface waters along with lesser amounts of data for aqueous and particulate dimethylsulfoniopropionate concentration, chlorophyll concentration, sea surface salinity and temperature, and wind speed has been assembled. The database was processed to create a series of climatological annual and monthly 1°x1°latitude-longitude squares of data. The results were compared to published fields of geophysical and biological parameters. No significant correlation was found between DMS and these parameters, and no simple algorithm could be found to create monthly fields of sea surface DMS concentration based on these parameters. Instead, an annual map of sea surface DMS was produced using an algorithm similar to that employed by Conkright et al. [1994]. In this approach, a first-guess field of DMS sea surface concentration measurements is created and then a correction to this field is generated based on actual measurements. Monthly sea surface grids of DMS were obtained using a similar scheme, but the sparsity of DMS measurements made the method difficult to implement. A scheme was used which projected actual data into months of the year where no data were otherwise presen

    Low cobalt inventories in the Amundsen and Ross seas driven by high demand for labile cobalt uptake among native phytoplankton communities

    Get PDF
    Cobalt (Co) is a scarce but essential micronutrient for marine plankton in the Southern Ocean and coastal Antarctic seas, where dissolved cobalt (dCo) concentrations can be extremely low. This study presents total dCo and labile dCo distributions measured via shipboard voltammetry in the Amundsen Sea, the Ross Sea and Terra Nova Bay during the CICLOPS (Cobalamin and Iron Co-Limitation of Phytoplankton Species) expedition. A significantly smaller dCo inventory was observed during the 2017/2018 CICLOPS expedition compared to two 2005/2006 expeditions to the Ross Sea conducted over a decade earlier. The dCo inventory loss (∼ 10–20 pM) was present in both the surface and deep ocean and was attributed to the loss of labile dCo, resulting in the near-complete complexation of dCo by strong ligands in the photic zone. A changing dCo inventory in Antarctic coastal seas could be driven by the alleviation of iron (Fe) limitation in coastal areas, where the flux of Fe-rich sediments from melting ice shelves and deep sediment resuspension may have shifted the region towards vitamin B12 and/or zinc (Zn) limitation, both of which are likely to increase the demand for Co among marine plankton. High demand for Zn by phytoplankton can result in increased Co and cadmium (Cd) uptake because these metals often share the same metal uptake transporters. This study compared the magnitudes and ratios of Zn, Cd and Co uptake (ρ) across upper-ocean profiles and the observed order-of-magnitude uptake trends (ρZn &gt; ρCd &gt; ρCo) that paralleled the trace metal concentrations in seawater. High rates of Co and Zn uptake were observed throughout the region, and the speciation of available Co and Zn appeared to influence trends in dissolved metal : phosphate stoichiometry and uptake rates over depth. Multi-year loss of the dCo inventory throughout the water column may be explained by an increase in Co uptake into particulate organic matter and subsequently an increased flux of Co into sediments via sinking and burial. This perturbation of the Southern Ocean Co biogeochemical cycle could signal changes in the nutrient limitation regimes, phytoplankton bloom composition and carbon sequestration sink of the Southern Ocean.</p
    corecore