419 research outputs found

    Hawking radiation of nonsingular black holes in two dimensions

    Get PDF
    In this letter we study the process of Hawking radiation of a black hole assuming the existence of a limiting physical curvature scale. The particular model is constructed using the Limiting Curvature Hypothesis (LCH) and in the context of two-dimensional dilaton gravity. The black hole solution exhibits properties of the standard Schwarzschild solution at large values of the radial coordinate. However, near the center, the black hole is nonsingular and the metric becomes that of de Sitter spacetime. The Hawking temperature is calculated using the method of complex paths. We find that such black holes radiate eternally and never completely evaporate. The final state is an eternally radiating relic, near the fundamental scale, which should make a viable dark matter candidate. We briefly comment on the black hole information loss problem and the production of such black holes in collider experiments.Comment: 8 pages, 4 figures; minor revisions; references added; version to appear in JHE

    Quantum cosmology of a classically constrained nonsingular Universe

    Get PDF
    The quantum cosmological version of a nonsingular Universe presented by Mukhanov and Brandenberger in the early nineties has been developed and the Hamilton Jacobi equation has been found under semiclassical (WKB) approximation. It has been pointed out that, parameterization of classical trajectories with semiclassical time parameter, for such a classically constrained system, is a nontrivial task and requires Lagrangian formulation rather than the Hamiltonian formalism.Comment: 15 page

    Black Holes and Photons with Entropic Force

    Full text link
    We study entropic force effects on black holes and photons. We find that application of an entropic analysis restricts the radial change ΔR\Delta R of a black hole of radius RHR_{\mathrm{H}}, due to a test particle of a Schwartzchild radius RhR_{h} moving towards the black hole by Δx\Delta x near black body surface, to be given by a relation RHΔR=RhΔx/2R_{\mathrm{H}} \Delta R= R_h \Delta x/2, or {\Delta R}/{\lambdabar_M} = {\Delta x}/{2 \lambdabar_m}. We suggest a new rule regarding entropy changes in different dimensions, \Delta S= 2\pi k D \Delta l /\lambdabar, which unifies Verlinde's conjecture and the black hole entropy formula. We also propose to extend the entropic force idea to massless particles such as a photon. We find that there is an entropic force on a photon of energy EγE_\gamma, with F=GMmγ/R2F=G M m_{\gamma}/R^2, and therefore the photon has an effective gravitational mass mγ=Eγ/c2m_\gamma = E_\gamma/c^2.Comment: 4 Latex pages, no figure

    Towards a Stringy Resolution of the Cosmological Singularity

    Full text link
    We study cosmological solutions to the low-energy effective action of heterotic string theory including possible leading order α\alpha' corrections and a potential for the dilaton. We consider the possibility that including such stringy corrections can resolve the initial cosmological singularity. Since the exact form of these corrections is not known the higher-derivative terms are constructed so that they vanish when the metric is de Sitter spacetime. The constructed terms are compatible with known restrictions from scattering amplitude and string worldsheet beta-function calculations. Analytic and numerical techniques are used to construct a singularity-free cosmological solution. At late times and low-curvatures the metric is asymptotically Minkowski and the dilaton is frozen. In the high-curvature regime the universe enters a de Sitter phase.Comment: 6 pages, 2 Figures; minor revisions; references added; REVTeX 4; version to appear in Phys. Rev.

    General Non-minimal Kinetic coupling to gravity

    Full text link
    We study a new model of scalar field with a general non-minimal kinetic coupling to itself and to the curvature, as a source of dark energy, and analyze the cosmological dynamics of this model and the issue of accelerated expansion. A wide variety of scalar fields and potentials giving rise to power-law expansion have been found. The dynamical equation of state is studied for the two cases, without and with free kinetic term . In the first case, a behavior very close to that of the cosmological constant was found. In the second case, a solution was found, which match the current phenomenology of the dark energy. The model shows a rich variety of dynamical scenarios.Comment: 25 pages, 3 figures; figure added, references adde

    Time evolution of a non-singular primordial black hole

    Full text link
    There is growing notion that black holes may not contain curvature singularities (and that indeed nature in general may abhor such spacetime defects). This notion could have implications on our understanding of the evolution of primordial black holes (PBHs) and possibly on their contribution to cosmic energy. This paper discusses the evolution of a non-singular black hole (NSBH) based on a recent model [1]. We begin with a study of the thermodynamic process of the black hole in this model, and demonstrate the existence of a maximum horizon temperature T_{max}, corresponding to a unique mass value. At this mass value the specific heat capacity C changes signs to positive and the body begins to lose its black hole characteristics. With no loss of generality, the model is used to discuss the time evolution of a primordial black hole (PBH), through the early radiation era of the universe to present, under the assumption that PBHs are non-singular. In particular, we track the evolution of two benchmark PBHs, namely the one radiating up to the end of the cosmic radiation domination era, and the one stopping to radiate currently, and in each case determine some useful features including the initial mass m_{f} and the corresponding time of formation t_{f}. It is found that along the evolutionary history of the universe the distribution of PBH remnant masses (PBH-RM) PBH-RMs follows a power law. We believe such a result can be a useful step in a study to establish current abundance of PBH-MRs.Comment: To appear in Int. J. Mod. Phys.

    A Curvature Principle for the interaction between universes

    Full text link
    We propose a Curvature Principle to describe the dynamics of interacting universes in a multi-universe scenario and show, in the context of a simplified model, how interaction drives the cosmological constant of one of the universes toward a vanishingly small value. We also conjecture on how the proposed Curvature Principle suggests a solution for the entropy paradox of a universe where the cosmological constant vanishes.Comment: Essay selected for an honorable mention by the Gravity Research Foundation, 2007. Plain latex, 8 page

    T and S dualities and The cosmological evolution of the dilaton and the scale factors

    Get PDF
    Cosmologically stabilizing radion along with the dilaton is one of the major concerns of low energy string theory. One can hope that T and S dualities can provide a plausible answer. In this work we study the impact of S and T duality invariances on dilaton gravity. We have shown various instances where physically interesting models arise as a result of imposing the mentioned invariances. In particular S duality has a very privileged effect in that the dilaton equations partially decouple from the evolution of the scale factors. This makes it easy to understand the general rules for the stabilization of the dilaton. We also show that certain T duality invariant actions become S duality invariance compatible. That is they mimic S duality when extra dimensions stabilize.Comment: Corrected a misleading interpretation of the S duality transformation and a wrong comment on d=10. I thank A.Kaya for pointing this out to me in time. So the new version is dealing with d=10 only. Added references and corrected some typos. Minor re-editing. Omitted a section for elaboration in a further study. Corrected further typo

    The r-modes in accreting neutron stars with magneto-viscous boundary layers

    Full text link
    We explore the dynamics of the r-modes in accreting neutron stars in two ways. First, we explore how dissipation in the magneto-viscous boundary layer (MVBL) at the crust-core interface governs the damping of r-mode perturbations in the fluid interior. Two models are considered: one assuming an ordinary-fluid interior, the other taking the core to consist of superfluid neutrons, type II superconducting protons, and normal electrons. We show, within our approximations, that no solution to the magnetohydrodynamic equations exists in the superfluid model when both the neutron and proton vortices are pinned. However, if just one species of vortex is pinned, we can find solutions. When the neutron vortices are pinned and the proton vortices are unpinned there is much more dissipation than in the ordinary-fluid model, unless the pinning is weak. When the proton vortices are pinned and the neutron vortices are unpinned the dissipation is comparable or slightly less than that for the ordinary-fluid model, even when the pinning is strong. We also find in the superfluid model that relatively weak radial magnetic fields ~ 10^9 G (10^8 K / T)^2 greatly affect the MVBL, though the effects of mutual friction tend to counteract the magnetic effects. Second, we evolve our two models in time, accounting for accretion, and explore how the magnetic field strength, the r-mode saturation amplitude, and the accretion rate affect the cyclic evolution of these stars. If the r-modes control the spin cycles of accreting neutron stars we find that magnetic fields can affect the clustering of the spin frequencies of low mass x-ray binaries (LMXBs) and the fraction of these that are currently emitting gravitational waves.Comment: 19 pages, 8 eps figures, RevTeX; corrected minor typos and added a referenc

    DBI Inflation using a One-Parameter Family of Throat Geometries

    Full text link
    We demonstrate the possibility of examining cosmological signatures in the DBI inflation setup using the BGMPZ solution, a one-parameter family of geometries for the warped throat which interpolate between the Maldacena-Nunez and Klebanov-Strassler solutions. The warp factor is determined numerically and subsequently used to calculate cosmological observables including the scalar and tensor spectral indices, for a sample point in the parameter space. As one moves away from the KS solution for the throat the warp factor is qualitatively different, which leads to a significant change for the observables, but also generically increases the non-Gaussianity of the models. We argue that the different models can potentially be differentiated by current and future experiments.Comment: 17 pages, 10 figures; v2: section 4 expanded, references added; v3: typos fixe
    corecore