2,492 research outputs found

    Fractional Lindstedt series

    Full text link
    The parametric equations of the surfaces on which highly resonant quasi-periodic motions develop (lower-dimensional tori) cannot be analytically continued, in general, in the perturbation parameter, i.e. they are not analytic functions of the perturbation parameter. However rather generally quasi-periodic motions whose frequencies satisfy only one rational relation ("resonances of order 1") admit formal perturbation expansions in terms of a fractional power of the perturbation parameter, depending on the degeneration of the resonance. We find conditions for this to happen, and in such a case we prove that the formal expansion is convergent after suitable resummation.Comment: 40 pages, 6 figure

    Electrostatic pair creation and recombination in quantum plasmas

    Full text link
    The collective production of electron-positron pairs by electrostatic waves in quantum plasmas is investigated. In particular, a semi-classical governing set of equation for a self-consistent treatment of pair creation by the Schwinger mechanism in a quantum plasma is derived.Comment: 4 pages, 3 figures, to appear in JETP Letter

    Resummation of perturbation series and reducibility for Bryuno skew-product flows

    Full text link
    We consider skew-product systems on T^d x SL(2,R) for Bryuno base flows close to constant coefficients, depending on a parameter, in any dimension d, and we prove reducibility for a large measure set of values of the parameter. The proof is based on a resummation procedure of the formal power series for the conjugation, and uses techniques of renormalisation group in quantum field theory.Comment: 30 pages, 12 figure

    New Precision Electroweak Tests in Supergravity Models

    Get PDF
    We update the analysis of the precision electroweak tests in terms of 4 epsilon parameters, ϵ1,2,3,b\epsilon_{1,2,3,b}, to obtain more accurate experimental values of them by taking into account the new LEP data released at the 28th ICHEP (1996, Poland). We also compute ϵ1\epsilon_1 and ϵb\epsilon_b in the context of the no-scale SU(5)×U(1)SU(5)\times U(1) supergravity model to obtain the updated constraints by imposing the correlated constraints in terms of the experimental ellipses in the ϵ1ϵb\epsilon_1-\epsilon_b plane and also by imposing the new bound on the lightest chargino mass, mχ1±79m_{\chi^\pm_1}\gtrsim 79 GeV GeV. Upon imposing these new experimental results, we find that the situations in the no-scale model are much more favorable than those in the standard model, and if mt170m_t\gtrsim 170 GeV GeV, then the allowed regions at the 95% C.~L. in the no-scale model are tanβ4\tan\beta\gtrsim 4 and mχ1±120(82)m_{\chi^\pm_1}\lesssim 120 (82) GeV GeV for μ>0(μ<0)\mu>0 (\mu<0), which are in fact much more stringent than in our previous analysis. Therefore, assuming that mt170m_t\gtrsim 170 GeV GeV, if the lightest chargino mass bound were to be pushed up only by a few GeV, the sign on the Higgs mixing term μ\mu in the no-scale model could well be determined from the ϵ1ϵb\epsilon_1-\epsilon_b constraint to be positive at the 95% C.~L. At any rate, better accuracy in the measured mtm_t from the Tevatron in the near future combined with the LEP data is most likely to provide a decisive test of the no-scale SU(5)×U(1)SU(5)\times U(1) supergravity model.Comment: 15 pages, REVTEX, 1 figure (not included but available as a ps file from [email protected]

    Energy localization on q-tori, long term stability and the interpretation of FPU recurrences

    Full text link
    We focus on two approaches that have been proposed in recent years for the explanation of the so-called FPU paradox, i.e. the persistence of energy localization in the `low-q' Fourier modes of Fermi-Pasta-Ulam nonlinear lattices, preventing equipartition among all modes at low energies. In the first approach, a low-frequency fraction of the spectrum is initially excited leading to the formation of `natural packets' exhibiting exponential stability, while in the second, emphasis is placed on the existence of `q-breathers', i.e periodic continuations of the linear modes of the lattice, which are exponentially localized in Fourier space. Following ideas of the latter, we introduce in this paper the concept of `q-tori' representing exponentially localized solutions on low-dimensional tori and use their stability properties to reconcile these two approaches and provide a more complete explanation of the FPU paradox.Comment: 38 pages, 7 figure

    Incommensurate Charge Density Waves in the adiabatic Hubbard-Holstein model

    Full text link
    The adiabatic, Holstein-Hubbard model describes electrons on a chain with step aa interacting with themselves (with coupling UU) and with a classical phonon field \f_x (with coupling \l). There is Peierls instability if the electronic ground state energy F(\f) as a functional of \f_x has a minimum which corresponds to a periodic function with period πpF{\pi\over p_F}, where pFp_F is the Fermi momentum. We consider pFπa{p_F\over\pi a} irrational so that the CDW is {\it incommensurate} with the chain. We prove in a rigorous way in the spinless case, when \l,U are small and {U\over\l} large, that a)when the electronic interaction is attractive U<0U<0 there is no Peierls instability b)when the interaction is repulsive U>0U>0 there is Peierls instability in the sense that our convergent expansion for F(\f), truncated at the second order, has a minimum which corresponds to an analytical and πpF{\pi\over p_F} periodic \f_x. Such a minimum is found solving an infinite set of coupled self-consistent equations, one for each of the infinite Fourier modes of \f_x.Comment: 16 pages, 1 picture. To appear Phys. Rev.

    Persistence of Diophantine flows for quadratic nearly-integrable Hamiltonians under slowly decaying aperiodic time dependence

    Full text link
    The aim of this paper is to prove a Kolmogorov-type result for a nearly-integrable Hamiltonian, quadratic in the actions, with an aperiodic time dependence. The existence of a torus with a prefixed Diophantine frequency is shown in the forced system, provided that the perturbation is real-analytic and (exponentially) decaying with time. The advantage consists of the possibility to choose an arbitrarily small decaying coefficient, consistently with the perturbation size.Comment: Several corrections in the proof with respect to the previous version. Main statement unchange

    Twistless KAM tori

    Full text link
    A selfcontained proof of the KAM theorem in the Thirring model is discussed.Comment: 7 pages, 50 K, Plain Tex, generates one figure named gvnn.p

    A rigorous implementation of the Jeans--Landau--Teller approximation

    Get PDF
    Rigorous bounds on the rate of energy exchanges between vibrational and translational degrees of freedom are established in simple classical models of diatomic molecules. The results are in agreement with an elementary approximation introduced by Landau and Teller. The method is perturbative theory ``beyond all orders'', with diagrammatic techniques (tree expansions) to organize and manipulate terms, and look for compensations, like in recent studies on KAM theorem homoclinic splitting.Comment: 23 pages, postscrip

    Spin induced nonlinearities in the electron MHD regime

    Full text link
    We consider the influence of the electron spin on the nonlinear propagation of whistler waves. For this purpose a recently developed electron two-fluid model, where the spin up- and down populations are treated as different fluids, is adapted to the electron MHD regime. We then derive a nonlinear Schrodinger equation for whistler waves, and compare the coefficients of nonlinearity with and without spin effects. The relative importance of spin effects depend on the plasma density and temperature as well as the external magnetic field strength and the wave frequency. The significance of our results to various plasmas are discussed.Comment: 5 page
    corecore