41 research outputs found
A Parallel Tree code for large Nbody simulation: dynamic load balance and data distribution on CRAY T3D system
N-body algorithms for long-range unscreened interactions like gravity belong
to a class of highly irregular problems whose optimal solution is a challenging
task for present-day massively parallel computers. In this paper we describe a
strategy for optimal memory and work distribution which we have applied to our
parallel implementation of the Barnes & Hut (1986) recursive tree scheme on a
Cray T3D using the CRAFT programming environment. We have performed a series of
tests to find an " optimal data distribution " in the T3D memory, and to
identify a strategy for the " Dynamic Load Balance " in order to obtain good
performances when running large simulations (more than 10 million particles).
The results of tests show that the step duration depends on two main factors:
the data locality and the T3D network contention. Increasing data locality we
are able to minimize the step duration if the closest bodies (direct
interaction) tend to be located in the same PE local memory (contiguous block
subdivison, high granularity), whereas the tree properties have a fine grain
distribution. In a very large simulation, due to network contention, an
unbalanced load arises. To remedy this we have devised an automatic work
redistribution mechanism which provided a good Dynamic Load Balance at the
price of an insignificant overhead.Comment: 16 pages with 11 figures included, (Latex, elsart.style). Accepted by
Computer Physics Communication
An application of parallel computing to the simulation of volcanic eruptions
A parallel code for the simulation of the transient 3D dispersal of volcanic particles produced by explosive eruptions is presented. The model transport equations, based on the multiphase flow theory, describe the atmospheric dynamics of the gas-particle mixture ejected through the volcanic crater. The numerics is based on a finite-volume discretization scheme and a pressure-based iterative non-linear solver suited to compressible multiphase flows. The code has been parallelized by adopting an ad hoc domain partitioning scheme that enforces the load balancing. An optimized communication layer has been built over the Message-Passing Interface. The code proved to be remarkably efficient on several
high-performance platforms and makes it possible to simulate fully 3D eruptive scenarios on realistic volcano topography
Models of Networked Analysis at Regional Centres for LHC Experiments (MONARC), Phase 2 Report, 24th March 2000
An interactive virtual Environment to comunicate Vesuvius eruptions numerical simulations and Pompeii history
in the filePublishedope
