292 research outputs found

    Constraints on UED KK-neutrino dark matter from magnetic dipole moments

    Full text link
    Generically, universal extra dimension (UED) extensions of the standard model predict the stability of the lightest Kaluza-Klein (KK) particle and hence provide a dark matter candidate. For UED scenarios with one extra dimension, we model-independently determine the size of the induced dimension-five magnetic dipole moment of the KK-neutrino, ν(1)\nu^{(1)}. We show that current observational bounds on the interactions of dipole dark matter place constraints on UED models with KK-neutrino dark matter.Comment: References added, figures altered, discussion of results revised and expande

    Indirect Detection of Kaluza-Klein Dark Matter from Latticized Universal Dimensions

    Full text link
    We consider Kaluza-Klein dark matter from latticized universal dimensions. We motivate and investigate two different lattice models, where the models differ in the choice of boundary conditions. The models reproduce relevant features of the continuum model for Kaluza-Klein dark matter. For the model with simple boundary conditions, this is the case even for a model with only a few lattice sites. We study the effects of the latticization on the differential flux of positrons from Kaluza-Klein dark matter annihilation in the galactic halo. We find that for different choices of the compactification radius, the differential positron flux rapidly converges to the continuum model results as a function of the number of lattice sites. In addition, we consider the prospects for upcoming space-based experiments such as PAMELA and AMS-02 to probe the latticization effect.Comment: 25 pages, 9 figures, LaTeX. Final version published in JCA

    Gauge and Modulus Inflation from 5D Orbifold SUGRA

    Full text link
    We study the inflationary scenarios driven by a Wilson line field - the fifth component of a 5D gauge field and corresponding modulus field, within S^1/Z_2 orbifold supergravity (SUGRA). We use our off shell superfield formulation and give a detailed description of the issue of SUSY breaking by the F-component of the radion superfield. By a suitably gauged U(1)R symmetry and including couplings with compensator supermultiplets and a linear multiplet, we achieve a self consistent radion mediated SUSY breaking of no scale type. The inflaton 1-loop effective potential has attractive features needed for successful inflation. An interesting feature of both presented inflationary scenarios are the red tilted spectra with ns~0.96. For gauge inflation we obtain a significant tensor to scalar ratio r~0.1 of the density perturbations, while for the modulus inflation r is strongly suppressed.Comment: 14 pages, 1 figur

    Constraining Bosonic Supersymmetry from Higgs results and 8 TeV ATLAS multi-jets plus missing energy data

    Full text link
    The collider phenomenology of models with Universal Extra Dimensions (UED) is surprisingly similar to that of supersymmetric (SUSY) scenarios. For each level-1 bosonic (fermionic) Kaluza-Klein (KK) state, there is a fermionic (bosonic) analog in SUSY and thus UED scenarios are often known as bosonic supersymmetry. The minimal version of UED (mUED) gives rise to a quasi-degenerate particle spectrum at each KK-level and thus, can not explain the enhanced Higgs to diphoton decay rate hinted by the ATLAS collaboration of the Large Hadron Collider (LHC) experiment. However, in the non-minimal version of the UED (nmUED) model, the enhanced Higgs to diphoton decay rate can be easily explained via the suitable choice of boundary localized kinetic (BLK) terms for higher dimensional fermions and gauge bosons. BLK terms remove the degeneracy in the KK mass spectrum and thus, pair production of level-1 quarks and gluons at the LHC gives rise to hard jets, leptons and large missing energy in the final state. These final states are studied in details by the ATLAS and CMS collaborations in the context of SUSY scenarios. We find that the absence of any significant deviation of the data from the Standard Model (SM) prediction puts a lower bound of about 2.1 TeV on equal mass excited quarks and gluons.Comment: 19 page

    FCNC Top Quark Decays in Extra Dimensions

    Full text link
    The flavor changing neutral top quark decay t -> c X is computed, where X is a neutral standard model particle, in a extended model with a single extra dimension. The cases for the photon, X= \gamma,andaStandardModelHiggsboson,X=H,areanalyzedindetailinanonlinear, and a Standard Model Higgs boson, X = H, are analyzed in detail in a non-linearR_\xi gauge. We find that the branching ratios can be enhanced by the dynamics originated in the extra dimension. In the limit where 1/R >> ->, we have found Br(t -> c \gamma) \simeq 10^{-10} for 1/R = 0.5 TeV. For the decay t -> c H, we have found Br(t -> cH) \simeq 10^{-10} for a low Higgs mass value. The branching ratios go to zero when 1/R -> \infty.Comment: Accepted to be published in the Europ. Phys. Jour. C; 16 pages, 2 figure

    Warped Kaluza-Klein Dark Matter

    Full text link
    Warped compactifications of type IIB string theory contain natural dark matter candidates: Kaluza-Klein modes along approximate isometry directions of long warped throats. These isometries are broken by the full compactification, including moduli stabilization; we present a thorough survey of Kaluza-Klein mode decay rates into light supergravity modes and Standard Model particles. We find that these dark matter candidates typically have lifetimes longer than the age of the universe. Interestingly, some choices for embedding the Standard Model in the compactification lead to decay rates large enough to be observed, so this dark matter sector may provide constraints on the parameter space of the compactification.Comment: 37pp; v2. references, minor clarificatio

    Low-Energy Probes of a Warped Extra Dimension

    Full text link
    We investigate a natural realization of a light Abelian hidden sector in an extended Randall-Sundrum (RS) model. In addition to the usual RS bulk we consider a second warped space containing a bulk U(1)_x gauge theory with a characteristic IR scale of order a GeV. This Abelian hidden sector can couple to the standard model via gauge kinetic mixing on a common UV brane. We show that if such a coupling induces significant mixing between the lightest U(1)_x gauge mode and the standard model photon and Z, it can also induce significant mixing with the heavier U(1)_x Kaluza-Klein (KK) modes. As a result it might be possible to probe several KK modes in upcoming fixed-target experiments and meson factories, thereby offering a new way to investigate the structure of an extra spacetime dimension.Comment: 26 pages, 1 figure, added references, corrected minor typos, same as journal versio

    Search for Higgs bosons of the Universal Extra Dimensions at the Large Hadron Collider

    Full text link
    The Higgs sector of the Universal Extra Dimensions (UED) has a rather involved setup. With one extra space dimension, the main ingredients to the construct are the higher Kaluza-Klein (KK) excitations of the Standard Model Higgs boson and the fifth components of the gauge fields which on compactification appear as scalar degrees of freedom and can mix with the former thus leading to physical KK-Higgs states of the scenario. In this work, we explore in detail the phenomenology of such a Higgs sector of the UED with the Large Hadron Collider (LHC) in focus. We work out relevant decay branching fractions involving the KK-Higgs excitations. Possible production modes of the KK-Higgs bosons are then discussed with an emphasis on their associated production with the third generation KK-quarks and that under the cascade decays of strongly interacting UED excitations which turn out to be the only phenomenologically significant modes. It is pointed out that the collider searches of such Higgs bosons face generic hardship due to soft end-products which result from severe degeneracies in the masses of the involved excitations in the minimal version of the UED (MUED). Generic implications of either observing some or all of the KK-Higgs bosons at the LHC are discussed.Comment: 25 pages, 9 figures and 1 tabl

    Low-Energy Signals from Kinetic Mixing with a Warped Abelian Hidden Sector

    Full text link
    We investigate the detailed phenomenology of a light Abelian hidden sector in the Randall-Sundrum framework. Relative to other works with light hidden sectors, the main new feature is a tower of hidden Kaluza-Klein vectors that kinetically mix with the Standard Model photon and Z. We investigate the decay properties of the hidden sector fields in some detail, and develop an approach for calculating processes initiated on the ultraviolet brane of a warped space with large injection momentum relative to the infrared scale. Using these results, we determine the detailed bounds on the light warped hidden sector from precision electroweak measurements and low-energy experiments. We find viable regions of parameter space that lead to significant production rates for several of the hidden Kaluza-Klein vectors in meson factories and fixed-target experiments. This offers the possibility of exploring the structure of an extra spacetime dimension with lower-energy probes.Comment: (1+32) Pages, 13 Figures. v2: JHEP version (minor modifications, results unchanged
    corecore